Skip to main content

Advertisement

Log in

Impact patterns of soil salinity variations on the survival rate, growth performances, and physiology of Pterocarpus officinalis seedlings

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Pterocarpus officinalis is able to (1) improve its acclimation capacity if soil salinity increases slowly and (2) benefit from a freshwater episode.

Abstract

One likely effect of global change is an increase of the amplitude of salt variations in the soil of brackish coastal wetland forests. In the Antilles, such forests are dominated by the species Pterocarpus officinalis. The study aimed to determine the effect of 3 salinity levels (freshwater, moderate, and hypersalinity—i.e., 0, 10, and 30 ‰, respectively) and 3 patterns of salinity variation (fast or slow salinity increase, fluctuating salinity) on the growth and ecophysiology of P. officinalis seedlings. P. officinalis proved tolerant to 10 ‰ salinity, even if at this salt concentration the water constraint altered the plant’s water status and reduced stomatal conductance. No impact of the pattern of salinity variation was observed at 10 ‰. Seedlings were strongly affected by hypersalinity, but were able to acclimatize efficiently and to improve their performances (higher survival, total biomass, and photosynthesis) when salinity increased slowly. Young P. officinalis were also able to take advantage of a freshwater episode on the longer term, certainly through leaf desalination associated with enhanced photosynthesis and water use efficiency. Higher soil salinity and more intense dry seasons in the context of climate change could affect the stand-level regeneration potential of P. officinalis seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez-Lopez M (1990) Ecology of Pterocarpus officinalis forested wetlands in Puerto Rico. Forested wetlands. In: Lugo AE, Brinson MM, Brown S (eds) Ecosystems of the World 15: forested Wetlands. Elsevier Science Publishers, Amsterdam, pp 251–265

    Google Scholar 

  • Ball MC, Farquhar GD (1984) Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long-term salinity and humidity conditions. Plant Physiol 74:1–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bandou E, Lebailly F, Muller F, Dulormne M, Toribio A, Chabrol J, Courtecuisse R, Plenchette C, Prin Y, Duponnois R, Thiao M, Sylla S, Dreyfus B, Ba AM (2006) The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings. Mycorrhiza 16(8):559–565

    Article  CAS  PubMed  Google Scholar 

  • Biasutti M, Sobel AH, Camargo SJ, Creyts TT (2012) Projected changes in the physical climate of the Gulf Coast and Caribbean. Clim Change 112(3–4):819–845

    Article  Google Scholar 

  • Bompy (2013) Approche écologique et écophysiologique de l’effet des variations saisonnières sur la croissance des arbres dans les forêts côtières inondables des Antilles. Université des Antilles et de la Guyane, Pointe à Pitre pp 322

  • Bompy F, Lequeue G, Imbert D, Dulormne M (2014) Increasing fluctuations of soil salinity affect seedling growth performances and physiology in three Neotropical mangrove species. Plant Soil 380:399–413

    Article  CAS  Google Scholar 

  • Cai ZQ, Chen YJ, Bongers F (2007) Seasonal changes in photosynthesis and growth of Zizyphus attopensis seedlings in three contrasting microhabitats in a tropical seasonal rain forest. Tree Physiol 27(6):827–836

    Article  PubMed  Google Scholar 

  • Campbell JD, Taylor MA, Stephenson TS, Watson RA, Whyte FS (2011) Future climate of the Caribbean from a regional climate model. Int J Climatol 31(12):1866–1878

    Article  Google Scholar 

  • Cardona Olarte P, Twilley RR, Krauss KW, Rivera-Monroy V (2006) Responses of neotropical mangrove seedlings grown in monoculture and mixed culture under treatments of hydroperiod and salinity. Hydrobiologia 569:325–341

    Article  Google Scholar 

  • Cheeseman JM (2013) The integration of activity in saline environments: problems and perspectives. Funct Plant Biol 40:759–774

    CAS  Google Scholar 

  • Core Team R (2012) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna

    Google Scholar 

  • Dulormne M, Musseau O, Muller F, Toribio A, Ba A (2010) Effects of NaCl on growth, water status, N-2 fixation, and ion distribution in Pterocarpus officinalis seedlings. Plant Soil 327(1–2):23–34

    Article  CAS  Google Scholar 

  • English JP, Colmer TD (2011) Salinity and waterlogging tolerances in three stem-succulent halophytes (Tecticornia species) from the margins of ephemeral salt lakes. Plant Soil 348:379–396

    Article  CAS  Google Scholar 

  • Ewe SML, Sternberg LDSL (2005) Growth and gas exchange responses of Brazilian pepper (Schinus terebinthifolius) and native South Florida species to salinity. Trees Struct Funct 19(2):119–128

    Article  Google Scholar 

  • Ewel KC, Twilley RR, Ong JE (1998) Different kinds of mangrove forests provide different goods and services. Glob Ecol Biogeogr Lett 7(1):83–94

    Article  Google Scholar 

  • Flower JM (2004) Dérèglements durables de la dynamique de la végétation dans les mangroves des Petites Antilles : problèmes de régénération forestière après mortalité massive liée à des perturbations naturelles. Université des Antilles et de la Guyane, Pointe à Pitre

    Google Scholar 

  • Hoffmann WA, Poorter H (2002) Avoiding bias in calculations of relative growth rate. Ann Bot 90:37–42

    Article  PubMed Central  PubMed  Google Scholar 

  • Hogarth PJ (2007) The biology of mangroves and seagrasses. Oxford University Press, New York 273

    Book  Google Scholar 

  • Imbert D, Bonheme I, Saur E, Bouchon C (2000) Floristics and structure of the Pterocarpus officinalis swamp forest in Guadeloupe, Lesser Antilles. J Trop Ecol 16:55–68

    Article  Google Scholar 

  • Jeschke WD, Wolf O (1993) Importance of mineral nutrient cycling for salinity tolerance of plants. In: Leith H, Masoom A, (eds) Towards the rational use of high salinity tolerant plants. Kluwer Academic Publishers, Dordrecht,   pp 265–277

  • Krauss KW, Allen JA (2003) Influences of salinity and shade on seedling photosynthesis and growth of two mangrove species, Rhizophora mangle and Bruguiera sexangula, introduced to Hawaii. Aquat Bot 77(2003):311–324

    Article  Google Scholar 

  • Lambs L, Muller E, Fromard F (2008) Mangrove trees growing in a very saline condition but not using seawater. Rapid Commun Mass Spectrom 22(18):2835–2843

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Sternberg LdSL (1993) Effects of salinity fluctuation on photosynthetic gas exchange and plant growth of the red mangrove (Rhizophora mangle L.). J Exp Bot 44(1):9–16

    Article  Google Scholar 

  • Lohaus G (2007) Interaction between phloem transport and apoplastic solute concentrations. In: Sattelmacher B, Horst W, (eds) The Apoplast of higher plants: compartment of storage, transport and reactions. Springer, The Netherlands, pp 323–336

  • Lugo AE, Brown S, Brinson MM (1990) Concepts in wetland ecology. In: Lugo AE, Brinson MM, Brown S (eds) Ecosystems of the world 15. Elsevier Science Publishers Com, Amsterdam, pp 53–85

    Google Scholar 

  • Malaizé B, Bertran P, Carbonel P, Bonnissent D, Charlier K, Galop D, Imbert D, Serrand N, Stouvenot C, Pujol C (2011) Hurricanes and climate in the Caribbean during the past 3700 years BP. Holocene 21(6):911–924

    Article  Google Scholar 

  • Medina E, Cuevas E, Lugo A (2007) Nutrient and salt relations of P. officinalis L. in coastal wetlands of the Caribbean: assessment through leaf and soil analyses. Trees Struct Funct 21(3):321–327

    Article  Google Scholar 

  • Migeot J (2010) Phénologie et variations spatiales de la croissance des peuplements à Pterocarpus officinalis Jacq. dans la forêt marécageuse de Guadeloupe (Antilles Françaises). Université des Antilles et de la Guyane, Pointe à Pitre

  • Migeot J, Imbert D (2011) Structural and floristic patterns in tropical swamp forests: a case study from the Pterocarpus officinalis (Jacq.) forest in Guadeloupe French West Indies. Aquat Bot 94:1–8

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25(2):239–250

    Article  CAS  Google Scholar 

  • Murata N, Iwanaga F, Maimaiti A, Imada S, Mori N, Tanaka K, Yamanaka N (2012) Significant improvement of salt tolerance with 2-day acclimatization treatment in Elaeagnus oxycarpa seedlings. Environ Exp Bot 77:170–174

    Article  CAS  Google Scholar 

  • Novozamsky I, Houba VJG, Vaneck R, Vanvark W (1983) A novel digestion technique for multi-element plant analysis. Commun Soil Sci Plant Anal 14:239–249

  • Orcutt DM, Nilsen ET (2000) Physiology of plants under stress. Wiley J, (ed) New York, USA pp 696

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Jha B (2010) Salt tolerance mechanisms in mangroves: a review. Trees Struct Funct 24(2):199–217

    Article  Google Scholar 

  • Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove Bruguiera parviflora. Trees Struct Funct 18(2):167–174

    Article  CAS  Google Scholar 

  • Pearlstein SL, Felgera RS, Glenna EP, Harringtond J, Al-Ghaneme KA, Nelsona SG (2012) Nipa (Distichlis palmeri): a perennial grain crop for saltwater irrigation. J Arid Environ 82:60–70

    Article  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME, Davy AJ (2010) Salt stimulation of growth and photosynthesis in an extreme halophyte Arthrocnemum macrostachyum. Plant Biol 12(1):79–87

    Article  PubMed  Google Scholar 

  • Rivera-Ocasio E, Aide TM, Rios-Lopez N (2007) The effects of salinity on the dynamics of a Pterocarpus officinalis forest stand in Puerto Rico. J Trop Ecol 23:559–568

    Article  Google Scholar 

  • Saint-Etienne L, Paul S, Imbert D, Dulormne M, Muller F, Toribio A, Plenchette C, Ba AM (2006) Arbuscular mycorrhizal soil infectivity in a stand of the wetland tree Pterocarpus officinalis along a salinity gradient. For Ecol Manag 232(1–3):86–89

    Article  Google Scholar 

  • Saur E, Bonheme I, Nygren P, Imbert D (1998) Nodulation of Pterocarpus officinalis in the swamp forest of Guadeloupe (Lesser Antilles). J Trop Ecol 14(6):761–770

    Article  Google Scholar 

  • Sobrado MA (2005) Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica 43(2):217–221

    Article  Google Scholar 

  • Suarez N (2005) Leaf construction cost in Avicennia germinans as affected by salinity under field conditions. Biol Plant 49:111–116

    Article  Google Scholar 

  • Suarez N, Medina E (2005) Salinity effect on plant growth and leaf demography of the mangrove Avicennia germinans L. Trees Struct Funct 19(6):721–727

    Article  Google Scholar 

  • Suarez N, Medina E (2006) Influence of salinity on Na+and K+ accumulation, and gas exchange in Avicennia germinans. Photosynthetica 44(2):268–274

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang W, Yan Z, You S, Zhang Y, Chen L, Lin G (2011) Mangroves: obligate or facultative halophytes? a review. Trees Struct Funct 25(6):953–963

    Article  CAS  Google Scholar 

Download references

Author contribution statement

F Bompy This work corresponds to the experiments of his thesis. He obtained and analyzed the data, and wrote a significant part of the paper. D. Imbert He obtained and managed the financial support of this research. M. Dulormne She initiated this subject of research on the different patterns of salt variations, managed the experiment, data treatments, and wrote the main part of the paper.

Acknowledgments

This study was financially supported by the Total Foundation. We wish to thank Vanessa Virapin and Gauthier Lequeue for their technical assistance in carrying out measurements and Lucienne Desfontaine for the cation analyses at the Institut National de la Recherche Agronomique of Guadeloupe (UR ASTRO). We are also grateful to Anya Cockle for improving the English.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maguy Dulormne.

Additional information

Communicated by J. Major.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information

Additional supporting information may be found in the online version of this article.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bompy, F., Imbert, D. & Dulormne, M. Impact patterns of soil salinity variations on the survival rate, growth performances, and physiology of Pterocarpus officinalis seedlings. Trees 29, 119–128 (2015). https://doi.org/10.1007/s00468-014-1096-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1096-9

Keywords

Navigation