Skip to main content
Log in

Experimental ‘omics’ data in tree research: facing complexity

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

High-throughput experimental technology has provided insight into the inner functioning of plants. The current experimental technology facilitates the study of plant systems in a holistic manner, measuring observables from the genome, proteome, and metabolome up to the level of the ecosystem. The call for a systemic view in plant research is being made from multiple research fields. Although not yet fully developed for tree research, data sources are also rapidly growing in this area. Nevertheless, there are challenges and pitfalls in dealing with such increases in data. Some of these difficulties are deeply rooted in the complexity of the evolutionary systems. The lessons from complexity theory are rooted in studies performed several decades ago. Honouring principles that were formulated before bioinformatics and systems biology had been introduced facilitates the derivation of analytical methods with the potential to overcome these challenges in several ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott A (2012) The genome of giants: a walk through the forest of tree genomes. Tree Genet Genomes 8:443

    Article  Google Scholar 

  • Abril N, Gion J-M, Kerner R, Müller-Starck G, Navarro Cerrillo RM, Plomion C, Renaut J, Valledor L, Jorrin-Novo JV (2011) Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry 72:1219–1242

    Article  PubMed  CAS  Google Scholar 

  • Ahuja I, de Vos RCH, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  PubMed  CAS  Google Scholar 

  • Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483:205–208

    Article  PubMed  CAS  Google Scholar 

  • Ashby WR (1957) An introduction to cybernetics. Chapman & Hall, London

    Google Scholar 

  • Ashby WR (1958) Requisite variety and its implications for the control of complex systems. Cybernetica 1:83–99

    Google Scholar 

  • Ashby WR (1962) Principles of the self-organizing system. In: von Foerster H, Zopf GW Jr (eds) Principles of self-organization: transactions of the University of Illinois Symposium. Pergamon Press, London, pp 255–278

    Google Scholar 

  • Baker M (2012) The changes that count. Nature 482:257–262

    Article  PubMed  CAS  Google Scholar 

  • Bao Y, Dharmawardhana P, Mockler TC, Strauss SH (2009) Genome scale transcriptome analysis of shoot organogenesis in Populus. BMC Plant Biol 9:132

    Article  PubMed  CAS  Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  • Barabási A-L, Oltavi ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  CAS  Google Scholar 

  • Bascompte J (2007) Networks in ecology. Basic Appl Ecol 8:485–490

    Article  Google Scholar 

  • Beckage B, Gross LJ, Kauffman S (2011) The limits to prediction in ecological systems. Ecosphere 2:125

    Article  Google Scholar 

  • Bohler S, Bagard M, Oufir M, Planchon S, Hoffman L, Jolivet Y, Hausmann J-F, Dizengremel P, Renaut J (2007) A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 7:1584–1599

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1999) Theoretical biology in the third millennium. Phil Trans R Soc Lond B 354:1963–1965

    Article  CAS  Google Scholar 

  • Brosché M, Vincour B, Alatalo ER et al (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol 6:R101

    Article  PubMed  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  CAS  Google Scholar 

  • Businge E, Brackman K, Moritz T, Egertsdotter U (2012) Metabolite profiling reveals clear metabolic changes during somatic development of Norway spruce (Pices abies). Tree Physiol 32:232–244

    Article  PubMed  CAS  Google Scholar 

  • Bylesjö M, Nilsson R, Srivastava V, Grönlund A, Johansson AI, Jansson S, Karlsson J, Moritz T, Wingsle G, Trygg J (2009) Integrated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen. J Prot Res 8:199–210

    Article  CAS  Google Scholar 

  • Calfapietra C, Ainsworth EA, Beier C et al (2010) Challenges in elevated CO2 experiments on forests. Trends Plant Sci 15:5–10

    Article  PubMed  CAS  Google Scholar 

  • Cassman M (2005) Barriers to progress in systems biology. Nature 438:1079

    Article  PubMed  CAS  Google Scholar 

  • Castrillo JI, Oliver SG (2004) Yeast as a touchstone in post-genomic research: strategies for integrative analysis in functional genomics. J Biochem Mol Biol 37:93–106

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Liu C-J, Tschaplinski TJ, Zhao N (2012) Genomics of secondary metabolism in Populus: interactions with biotic and abiotic environment. Crit Rev Plant Sci 28:375–392

    Article  CAS  Google Scholar 

  • Cohen D, Bogeat-Triboulot M-B, Tisserant E, Balzergue S, Martin-Magniette M-L, Lelandais G, Ningre N, Renou J-P, Tamby J-P, Le Thiec D, Hummel I (2010) Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics 11:630

    Article  PubMed  CAS  Google Scholar 

  • Corning PA (1997) Holistic Darwinism: ‘Synergistic selection’ and the evolutionary process. J Soc Evol Syst 20:363–400

    Google Scholar 

  • Courty PE, Poletto M, Duchaussoy F, Buée M, Garbaye J, Martin F (2008) Gene transcription in Lactarius quietus-Quercus petraea ectomycorrhizas from a forest soil. Appl Environ Microbiol 74:6598–6605

    Article  PubMed  CAS  Google Scholar 

  • Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295:1664–1669

    Article  PubMed  CAS  Google Scholar 

  • Doyle JC, Csete ME (2005) Motifs, control, and stability. PLoS Biol 3:e392

    Article  PubMed  CAS  Google Scholar 

  • Druart N, Johansson A, Baba K, Schrader J, Sjödin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50:557–573

    Article  PubMed  CAS  Google Scholar 

  • Durand TC, Sergeant K, Renaut J, Planchon S, Hoffmann L, Carpin S, Label P, Morabito D, Hausman JF (2011) Poplar under drought: comparison of leaf and cambial proteomic responses. J Proteomics 74:1396–1410

    Article  PubMed  CAS  Google Scholar 

  • Eckert AJ, Pande B, Ersoz ES, Wright MH, Rashbrook VK, Nicolet CM, Neale DB (2009) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genomes 5:225–234

    Article  Google Scholar 

  • Eckert AJ, Wegrzyn JL, Cumbie WP, Goldfarb B, Huber DA, Tolstikov V, Fiehn O, Neale DB (2012) Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome. New Phytol 193:890–902

    Article  PubMed  CAS  Google Scholar 

  • Ernst D, Bahnweg G, Heller W (2012a) Effects of abiotic and biotic stress on gene transcription in European beech: from saplings to mature trees. Nova Acta Leopoldina (in press)

  • Ernst D, Jürgensen M, Bahnweg G, Heller W, Müller-Starck G (2012b) Common links of molecular biology with biochemistry and physiology in plants under ozone and pathogen attack. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch H (eds) Growth and defence in plants: resource allocation at multiple scales. Ecological studies, vol 220. Springer, Heidelberg, pp 29–51

  • Fernández P, Solé RV (2006) The role of computation in complex regulatory networks. In: Koonin EV, Wolf Y, Karev GP (eds) Power laws, scale-free networks and genome biology. Landes bioscience. Springer, New York, pp 206–225

  • Fernández-Pozo N, Canales J, Guerrero-Fernández D et al (2011) EuroPineDB: a high-coverage web database for maritime pine transcriptome. BMC Genomics 12:366

    Article  PubMed  Google Scholar 

  • Fernie AR (2012) Grand challenges in plant systems biology: closing the circle(s). Front Plant Sci 3:35

    Article  PubMed  Google Scholar 

  • Filichkin SA, Breton G, Priest HD, Dharmawardhana P, Jaiswal P, Fox SE, Michael TP, Chory J, Kay S, Mockler TC (2011) Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules. PLoS One 6:e16907

    Article  PubMed  CAS  Google Scholar 

  • Fox Keller E (2005a) The century beyond the gene. J Biosci 30:3–10

    Article  Google Scholar 

  • Fox Keller E (2005b) Revisiting “scale-free” networks. Bioessays 27:1060–1068

    Article  Google Scholar 

  • Fukushima A, Kusano M, Redestig H, Arita M, Saito K (2009) Integrated omics approaches in plant systems biology. Curr Opin Chem Biol 13:532–538

    Article  PubMed  CAS  Google Scholar 

  • Galbraith DW (2006) DNA microarray analyses in higher plants. OMICS 10:455–473

    Article  PubMed  CAS  Google Scholar 

  • Galindo González LM, El Kayal W, Ju CJ-T, Allen CCG, King-Jones S, Cooke JEK (2012) Integrated transcriptomic and proteomic profiling of white spruce stems during the transition from active growth to dormancy. Plant Cell Environ 35:682–701

    Article  PubMed  CAS  Google Scholar 

  • Gershenson C (2007) The world as evolving information. In: Minai A, Braha D, Bar-Yam Y (eds) Online Proceedings of the Seventh International Conference on Complex Systems. Paper #17. http://necsi.edu/events/iccs7/papers/9da71337b2793874036e781a0c6c.pdf

  • Gershenson C (2011a) The sigma profile: a formal tool to study organization and its evolution at multiple scales. Complexity 16:37–44

    Article  Google Scholar 

  • Gershenson C (2011b) The implications of interactions for science and philosophy. Cornell University Library. arXiv:1105.2827v1. (http://arxiv.org/pdf/1105.2827.pdf)

  • Gershenson C, Heylighen F (2003) When can we call a system self-organizing? In: Banzhaf W, Christaller T, Dittrich P, Kim JT, Ziegler J (eds) Advances in artificial life. 7th European Conference, ECAL 2003 LNAI 2801. Springer, Heidelberg, pp 606–614

  • Gmitter FG, Chen C, Machado MA, Alves de Souza A, Ollitrault P, Froehlicher Y, Shimizu T (2012) Citrus genomics. Tree Genet Genomes 8:611–626

    Article  Google Scholar 

  • Godsoe W, Strand E, Smith CI, Yoder JB, Esque TC, Pellmyr O (2009) Divergence in an obligate mutualism is not explained by divergent climatic factors. New Phytol 183:589–599

    Article  PubMed  Google Scholar 

  • Grattapaglia D, Vaillancourt RE, Shepard M, Thumma BR, Foley W, Külheim C, Potts BM, Myburg AA (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes 8:463–508

    Article  Google Scholar 

  • Gupta P, Duplessis S, White H, Karnosky DF, Martin F, Podila GK (2005) Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and tropospheric O3. New Phytol 167:129–142

    Article  PubMed  CAS  Google Scholar 

  • Haken H (1983) Synergetics, an introduction. In: Nonequilibrium phase-transitions and self-organization in physics, chemistry and biology, 3rd edn. Springer, New York

  • Hall DE, Robert JA, Keeling CI, Domanski D, Quesada AL, Jancsik S, Kuzyk MA, Hamberger B, Borchers CH, Bohlmann J (2011) An integrated genomic, proteomic and biochemical analysis of (+)-3-carene biosynthesis in Sitka spruce (Picea sitchensis) genotypes that are resistant or susceptible to white pine weevil. Plant J 65:936–948

    Article  PubMed  CAS  Google Scholar 

  • Heylighen F (1992) Principles of systems and cybernetics: an evolutionary perspective. In: Trappl R (ed) Cybernetics and systems’92. World Science, Singapore, pp 3–10. (http://pcp.lanl.gov/papers/PrinciplesCybSys.pdf)

  • Hoffman DE, Jonsson P, Bylesiö M, Trygg J, Antti H, Erikkson ME, Moritz T (2010) Changes in diurnal patterns within the Populus transcriptome and metabolome in response to photoperiod variation. Plant Cell Environ 33:1298–1313

    PubMed  CAS  Google Scholar 

  • Hogeweg P (2011) The roots of bioinformatics in theoretical biology. PLoS Comput Biol 7:e1002021

    Article  PubMed  CAS  Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  • Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, van Ruijven J, Weigelt A, Wilsey BJ, Zavalety ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202

    Article  PubMed  CAS  Google Scholar 

  • Jansson S, Douglas CJ (2009) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    Article  CAS  Google Scholar 

  • Janz D, Behnke K, Schnitzler J-P, Kanawati B, Schmitt-Kopplin P, Polle A (2010) Pathway analyses of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaptation to stress tolerance mechanisms. BMC Plant Biol 10:150

    Article  PubMed  CAS  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  PubMed  CAS  Google Scholar 

  • Joyce AR, Palsson BØ (2006) The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7:198–210

    Article  PubMed  CAS  Google Scholar 

  • Kauffman S (1969) Metabolic stability and epigenesist in randomly constructed genetic nets. J Theor Biol 22:437–467

    Article  PubMed  CAS  Google Scholar 

  • Kauffman S (1996) At home in the universe: the search for laws of self-organization and complexity. Oxford University Press, New York

    Google Scholar 

  • Kauffman S, Clayton P (2006) On emergence, agency, and organization. Biol Philos 21:501–521

    Article  Google Scholar 

  • Kerner R, Winkler JB, Dupuy JW, Jürgensen M, Lindermayr C, Ernst D, Müller-Starck G (2010) Changes in the proteome of juvenile European beech following three years exposure to free-air elevated ozone. iForest 4:69–76

    Article  Google Scholar 

  • Khaitovich P, Weiss G, Lachmann M, Hellmann I, Enard W, Muetzel B, Wirkner U, Ansorge W, Pääbo S (2004) A neutral model of transcriptome evolution. PLoS Biol 2:0682–0689

    Article  CAS  Google Scholar 

  • Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L, Hausman JF, Renault J (2009) Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Prot Res 8:400–417

    Article  CAS  Google Scholar 

  • Kim J (1999) Making sense of emergence. Philos Stud 95:3–36

    Article  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  PubMed  CAS  Google Scholar 

  • Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ (2010) Systems biology uncovers the foundation of natural genetic diversity. Plant Physiol 152:480–486

    Article  PubMed  CAS  Google Scholar 

  • Kontunen-Soppela S, Ossipov V, Ossipova S, Oksanen E (2007) Shift in birch leaf metabolome and carbon allocation during long-term open-field ozone exposure. Glob Change Biol 13:1053–1067

    Article  Google Scholar 

  • Kontunen-Soppela S, Parviainen J, Ruhanen H, Brosché M, Keinänen M, Thakur RC, Kohlemainen M, Kangasjärvi J, Oksanen E, Karnosky DF, Vapaavuori E (2010) Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence. Environ Pollut 158:959–968

    Article  PubMed  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress responses. J Proteomics 74:1301–1322

    Article  PubMed  CAS  Google Scholar 

  • Kremer A, Abbott AG, Carlson JE, Manos PS, Plomion C, Sisco P, Staton ME, Ueno S, Vendramin GG (2012) Genomics of Fagaceae. Tree Genet Genomes 8:583–601

    Article  Google Scholar 

  • Larsen PE, Sreedasyam A, Trivedi G, Podila GK, Cseke LJ, Collart FR (2011) Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome. BMC Syst Biol 5:70

    Article  PubMed  Google Scholar 

  • Lay JO Jr, Liyanage R, Borgmann S, Wilkins CL (2006) Problems with the “omics”. Trends Anal Chem 25:1046–1056

    Article  CAS  Google Scholar 

  • Liu W, Thummasuwan S, Sehgal SK, Chouvarine P, Peterson DG (2011a) Characterization of the genome of bald cypress. BMC Genomics 12:553

    Article  PubMed  CAS  Google Scholar 

  • Liu Y-Y, Slotine J-J, Barabási A-L (2011b) Controllability of complex networks. Nature 473:167–173

    Article  PubMed  CAS  Google Scholar 

  • Lorenz WW, Alba R, Yu YS, Bordeaux JM, Simões M, Dean JFD (2011) Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genomics 12:264

    Article  PubMed  CAS  Google Scholar 

  • Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–312

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U (2012) Whole-plant physiology: synergistic emergence rather than modularity. Prog Bot 75 (in press)

  • Martin F, Aerts A, Ahrén D et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–93

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Bahnweg G, Ceulemans R, Fabian P, Grill D, Hanke DE, Kraigher H, Oßwald W, Rennenberg H, Sandermann H, Tausz M, Wieser G (2007) Synopsis of the CASIROZ case study: carbon sink strength of Fagus sylvatica L. in a changing environment—experimental risk assessment of mitigation by chronic ozone impact. Plant Biol 9:163–180

    Article  PubMed  CAS  Google Scholar 

  • May RM (2001) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. WH Freeman, New York

    Google Scholar 

  • Mazzochi F (2008) Complexity in biology. EMBO Rep 9:10–14

    Article  CAS  Google Scholar 

  • Medina M, Sachs JL (2010) Symbiont genomics, our new tangled bank. Genomics 95:129–137

    Article  PubMed  CAS  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Shinozaki K (2011) Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol 52:2017–2038

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern O, von Neumann J (1944) The theory of games and economic behavior. Princeton University Press, Princeton

    Google Scholar 

  • Morreel K, Goeminne G, Storme V, Sterck L, Ralph J, Coppieters W, Breyne P, Steenackers M, Georges M, Messens E, Boerjan W (2006) Genetical metabolomics of flavonoid biosynthesis in Populus: a case study. Plant J 47:224–237

    Article  PubMed  CAS  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  Google Scholar 

  • Ng A, Bursteinas B, Gao Q, Mollison E, Zvelebil M (2006) Resources for integrative systems biology: from data through databases to networks and dynamic system models. Briefings Bioinform 7:318–330

    Article  CAS  Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New York

    Google Scholar 

  • Noble D (2002) Modeling the heart—from genes to cells to the whole organ. Science 295:1678–1682

    Article  PubMed  CAS  Google Scholar 

  • Nurse P (2008) Life, logic and information. Nature 454:424–426

    Article  PubMed  CAS  Google Scholar 

  • Olbrich M, Gerstner E, Welzl G, Winkler JB, Ernst D (2009) Transcript responses in leaves of ozone-treated beech saplings at an outdoor free air model fumigation site over two growing seasons. Plant Soil 323:61–74

    Article  CAS  Google Scholar 

  • Olbrich M, Knappe C, Wenig M et al (2010) Ozone fumigation (twice ambient) reduces leaf infestation following natural and artificial inoculation by the endophytic fungus Apiognomonia errabunda of adult European beech trees. Environ Pollut 158:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Ossipov V, Ossipova S, Bykov V, Oksanen E, Koricheva J, Haukioja E (2008) Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term field experiment. Metabolomics 4:39–51

    Article  CAS  Google Scholar 

  • Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA (2010) Transcriptome sequencing in ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180

    Article  PubMed  CAS  Google Scholar 

  • Pavy N, Johnson JJ, Crow JA, Paule C, Kunau T, Mackay J, Retzel EF (2007) Forest TreeDB: a database dedicated to the mining of tree transcriptomes. Nucleic Acids Res 35:D887–D894

    Article  Google Scholar 

  • Pawlowski TA (2010) Proteomic approach to analyze dormancy breaking of tree seeds. Plant Mol Biol 73:15–25

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer T, Hoffmann R (2009) Large-scale assessment of the effect of popularity on the reliability of research. PLoS One 4:e5996

    Article  PubMed  CAS  Google Scholar 

  • Plomion C, Lalanne C, ClaveroL S, Meddour H, Kohler A, Bogeat-Triboulot M-B, Barre A, Le Provost G, Dumazet H, Jacob D, Bastien C, Dreyer E, de Daruvar A, Guehl J-M, Schmitter J-M, Martin F, Bonneu M (2006) Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics 6:6509–6527

    Article  PubMed  CAS  Google Scholar 

  • Podila GK, Sreedasyam A, Muratet MA (2009) Populus rhizosphere and the ectomycorrhizal interactome. Crit Rev Plant Sci 5:359–367

    Article  CAS  Google Scholar 

  • Pop A, Huttenhower C, Iyer-Pascuzzi A, Benfey PN, Troyanskaya OG (2010) Integrated functional networks of process, tissue, and development state specific interactions in Arabidopsis thaliana. BMC Syst Biol 4:180

    Article  PubMed  Google Scholar 

  • Prigogine I, Stengers I (1984) Order out of chaos: man’s new dialogue with nature. Heinemann, London

    Google Scholar 

  • Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20:345–353

    Article  PubMed  Google Scholar 

  • Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J (2011) Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol 31:452–461

    Article  PubMed  Google Scholar 

  • Ralph SG, Chun HJE, Kolosova N et al (2008) A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNA for Sitka spruce (Picea sitchensis). BMC Genomics 9:484

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff DF (2005) Bias as a threat to the validity of cancer molecular-marker research. Nat Rev Cancer 5:142–149

    Article  PubMed  CAS  Google Scholar 

  • Ricardo CPP, Martins I, Francisco R, Sergeant K, Pinheiro C, Campos A, Renaut J, Fevereiro P (2011) Proteins associated with cork formation in Quercus suber L. stem tissue. J Proteomics 74:1266–1278

    Article  PubMed  CAS  Google Scholar 

  • Rigault P, Boyle B, Lepage P, Cooke JEK, Bousquet J, MacKay JJ (2011) A white spruce gene catalog for conifer genome analyses. Plant Physiol 157:14–28

    Article  PubMed  CAS  Google Scholar 

  • Rosenblueth A, Wiener N (1945) The role of models in science. Philos Sci 12:316–321

    Article  Google Scholar 

  • Sauer U, Heinemann M, Zamboni N (2007) Getting closer to the whole picture. Science 316:550–551

    Article  PubMed  CAS  Google Scholar 

  • Scherling C, Ulrich K, Ewald D, Weckwerth W (2009) A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro-grown poplar plants revealed by metabolomics. Mol Plant Microb Interact 22:1032–1037

    Article  CAS  Google Scholar 

  • Sergeant K, Spieß N, Renault J, Wilhelm E, Hausman JF (2011) One dry summer: a leaf proteome study on the response of oak to drought exposure. J Proteomics 74:1385–1395

    Article  PubMed  CAS  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    Article  PubMed  CAS  Google Scholar 

  • Sinclair TR, Purcell LC (2005) Is a physiological perspective relevant in a ‘genocentric’ age? J Exp Bot 56:2777–2782

    Article  PubMed  CAS  Google Scholar 

  • Smale S (1976) On the differential equations of species in competition. J Math Biol 3:5–7

    Article  PubMed  CAS  Google Scholar 

  • Sober E (1981) The principle of parsimony. Brit J Phil Sci 32:145–156

    Article  Google Scholar 

  • Sontag ED (2004) Some new directions in control theory inspired by systems biology. Syst Biol 1:9–18

    Article  CAS  Google Scholar 

  • Soto AM, Sonnenschein C (2006) Emergentism by default: a view from the bench. Synthese 151:361–376

    Article  Google Scholar 

  • Street N, Jansson S, Hvidsten TR (2011) A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation. BMC Plant Biol 11:13

    Article  PubMed  Google Scholar 

  • Sweetlove LJ, Fernie AR (2005) Regulation of metabolic networks: understanding metabolic complexity in the systems biology era. New Phytol 168:9–24

    Article  PubMed  CAS  Google Scholar 

  • Taylor G, Street NR, Tricker PJ, Sjödin A, Graham L, Skogström O, Calfapietra C, Scarascia-Mugnozza G, Jansson S (2005) The transcriptome of Populus in elevated CO2. New Phytol 167:143–154

    Article  PubMed  CAS  Google Scholar 

  • Troggio M, Gleave A, Salvi S, Chagné D, Cestaro A, Kumar S, Crowhurst RN, Gardiner SE (2012) Apple, from genome to breeding. Tree Genet Genomes 8:509–529

    Article  Google Scholar 

  • Turing A (1952) The chemical basis of morphogenesis. Phil Trans Roy Soc B 237:37–72

    Article  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Le Provost G, Léger V et al (2010) Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak. BMC Genomics 1:650

    Article  CAS  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opinion Plant Biol 13:132–138

    Article  CAS  Google Scholar 

  • Valero Galván J, Valledor L, Navarro Cerrillo RM, Pelegrín EG, Jorrín-Novo JV (2011) Studies of variability in holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) through acorn protein profile analysis. J Proteomics 74:1244–1255

    Article  PubMed  CAS  Google Scholar 

  • van Regenmortel MHV (2004) Reductionism and complexity in molecular biology. EMBO Rep 5:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • von Bertalanffy L (1969) General system theory: foundations, development, applications. Braziller, New York

    Google Scholar 

  • von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  • Wacholder S, Chanock S, Garcia-Closas M, Elghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442

    Article  PubMed  Google Scholar 

  • Warren CR, Aranda I, Cano FJ (2012) Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress. Metabolomics 8:186–200

    Article  CAS  Google Scholar 

  • Weckwerth W (2011) Green systems biology—from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteom 75:284–305

    Article  CAS  Google Scholar 

  • Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotech 22:1249–1252

    Article  CAS  Google Scholar 

  • Wiener N (1948) Cybernetics, or control and communication in the animal and the machine. MIT Press, Cambridge

    Google Scholar 

  • Wullschleger SD, Weston DJ, Davis JM (2009) Populus responses to edaphic and climatic cues: emerging evidence from systems biology research. Crit Rev Plant Sci 28:368–374

    Article  CAS  Google Scholar 

  • Yang X, Kalluri UD, DiFazio SP, Wullschleger SD, Tschaplinski TJ, Cheng Z-M, Tuskan GA (2009) Poplar genomics: state of the science. Crit Rev Plant Sci 28:285–308

    Article  CAS  Google Scholar 

  • Yuan SJ, Galbraith DW, Dai SY, Griffin P, Stewart CN Jr (2008) Plant systems biology comes of age. Trends Plant Sci 13:165–171

    Article  PubMed  CAS  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  PubMed  CAS  Google Scholar 

  • zu Castell W (2012) Complex systems: chances and risks for experimental data analysis. Nova Acta Leopoldina (in press)

  • Zulak KG, Lippert DN, Kuzyk MA, Domanski D, Chou T, Borchers CH, Bohlmann J (2009) Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multi-level study of methyl jasmonate-treated Norway spruce (Picea abies). Plant J 60:1015–1030

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang zu Castell.

Additional information

Communicated by R. Matyssek.

Special topic: Integrating Modeling and Experiment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

zu Castell, W., Ernst, D. Experimental ‘omics’ data in tree research: facing complexity. Trees 26, 1723–1735 (2012). https://doi.org/10.1007/s00468-012-0777-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0777-5

Keywords

Navigation