Skip to main content

Advertisement

Log in

Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-watering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abebe, T., Guenzi, A. C., Martin, B., & Cushman, J. C. (2003). Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiology, 131, 1748–1755.

    Article  PubMed  CAS  Google Scholar 

  • Adams, M. A., Attiwill, P. M., & Wang, L. M. (1995). Effects of phosphorus supply on growth and nitrogen fractions in xylem sap and foliage of Eucalyptus regnans (Muell. F.), Eucalyptus nitens (Maiden) and Eucalyptus globulus (Labill) seedlings—implications for herbivory. Trees-Structure and Function, 9, 324–331.

    Article  Google Scholar 

  • Adams, M. A., Chen, Z. L., Landman, P., & Colmer, T. D. (1999). Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives. Analytical Biochemistry, 266, 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Adams, M. A., Richter, A., Hill, A. K., & Colmer, T. D. (2005). Salt tolerance in Eucalyptus spp.: identity and response of putative osmolytes. Plant Cell and Environment, 28, 772–787.

    Article  CAS  Google Scholar 

  • Allan, W. L., Simpson, J. P., Clark, S. M., & Shelp, B. J. (2008). γ-hydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms. Journal of Experimental Botany, 59, 2555–2564.

    Article  PubMed  CAS  Google Scholar 

  • Arndt, S. K., Livesley, S. J., Merchant, A., Bleby, T. M., & Grierson, P. F. (2008). Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress. Plant Cell and Environment, 31, 915–924.

    Article  CAS  Google Scholar 

  • Barnett, N. M., & Naylor, A. W. (1966). Amino acid and protein synthesis in Bermuda grass during water stress. Plant Physiology, 41, 1222–1230.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, R. N., & Wallsgrove, R. M. (1994). Secondary metabolites in plant defense-mechanisms. New Phytologist, 127, 617–633.

    Article  CAS  Google Scholar 

  • Bohnert, H. J., & Shen, B. (1999). Transformation and compatible solutes. Scientia Horticulturae, 78, 237–260.

    Article  CAS  Google Scholar 

  • Charlton, A. J., Donarski, J. A., Harrison, M., et al. (2008). Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics, 4, 312–327.

    Article  CAS  Google Scholar 

  • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology, 30, 239–264.

    Article  CAS  Google Scholar 

  • Chen, Z. L., Landman, P., Colmer, T. D., & Adams, M. A. (1998). Simultaneous analysis of amino and organic acids in extracts of plant leaves as tert-butyldimethylsilyl derivatives by capillary gas chromatography. Analytical Biochemistry, 259, 203–211.

    Article  PubMed  CAS  Google Scholar 

  • Close, D. C., & Beadle, C. L. (2003). Alternate energy dissipation? Phenolic metabolites and the xanthophyll cycle. Journal of Plant Physiology, 160, 431–434.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085–1097.

    Article  PubMed  CAS  Google Scholar 

  • Dreyer, E., Bousquet, F., & Ducrey, M. (1990). Use of pressure volume curves in water relation analysis on woody shoots: influence of rehydration and comparison of four European oak species. Annals of Forest Science, 47, 285–297.

    Article  Google Scholar 

  • Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Foito, A., Byrne, S. L., Shepherd, T., Stewart, D., & Barth, S. (2009). Transcriptional and metabolic profiles of Lolium perenne L. genotypes in response to a PEG-induced water stress. Plant Biotechnology Journal, 7, 719–732.

    Article  PubMed  CAS  Google Scholar 

  • Graham, T. L., & Graham, M. Y. (1996). Signaling in soybean phenylpropanoid responses. Dissection of primary, secondary, and conditioning effects of light, wounding and elicitor treatments. Plant Physiology, 110, 1123–1133.

    PubMed  CAS  Google Scholar 

  • Guarnaschelli, A. B., Lemcoff, J. H., Prystupa, P., & Basci, S. O. (2003). Responses to drought preconditioning in Eucalyptus globulus Labill. provenances. Trees-Structure and Function, 17, 501–509.

    Article  Google Scholar 

  • Hare, P. D., Cress, W. A., & Van Staden, J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell and Environment, 21, 535–553.

    Article  CAS  Google Scholar 

  • Hattori, S., Yoshida, S., & Hasegawa, M. (1954). Occurrence of shikimic acid in the leaves of gymnosperms. Physiologia Plantarum, 7, 283–289.

    Article  CAS  Google Scholar 

  • Hillis, W. E. (1959). Shikimic acid in the leaves of Eucalyptus sieberiana f muell. Journal of Experimental Botany, 10, 87–89.

    Article  CAS  Google Scholar 

  • Hinckley, T. M., Duhme, F., Hinckley, A. R., & Richter, H. (1980). Water Relations of Drought Hardy Shrubs - Osmotic Potential and Stomatal Reactivity. Plant Cell and Environment, 3, 131–140.

    Google Scholar 

  • Hsiao, T. C. (1973). Plant responses to water stress. Annual Review of Plant Physiology and Plant Molecular Biology, 24, 519–570.

    CAS  Google Scholar 

  • Jaindl, M., & Popp, M. (2006). Cyclitols protect glutamine synthetase and malate dehydrogenase against heat induced deactivation and thermal denaturation. Biochemical and Biophysical Research Communications, 345, 761–765.

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen, A. N., Aasen, I. M., & Strom, A. R. (2007). Endogenously synthesized (−)-proto-quercitol and glycine betaine are principal compatible solutes of Schizochytrium sp strain S8 (ATCC 20889) and three new isolates of phylogenetically related thraustochytrids. Applied and Environmental Microbiology, 73, 5848–5856.

    Article  PubMed  CAS  Google Scholar 

  • Joly, R. L., & Zaerr, J. B. (1987). Alteration of cell-wall water content and elasticity in Douglas fir during periods of water deficit. Plant Physiology, 83, 418–422.

    Article  PubMed  CAS  Google Scholar 

  • Karakas, B., OziasAkins, P., Stushnoff, C., Suefferheld, M., & Rieger, M. (1997). Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell and Environment, 20, 609–616.

    Article  Google Scholar 

  • Keegstra, K., Talmadge, K. W., Bauer, W. D., & Albersheim, P. (1973). The Structure of Plant Cell Walls: III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiology, 51, 188–196.

    Article  PubMed  CAS  Google Scholar 

  • Knights, B. A. (1967). Identification of plant sterols using combined GLC/mass spectrometry. Journal of Gas Chromatography, 5, 273.

    CAS  Google Scholar 

  • Kramer, P. J., & Boyer, J. S. (1995). Water relations of plants and soils. San Diego: Academic Press.

    Google Scholar 

  • Kubiske, M. E., & Abrams, M. D. (1991). Seasonal, diurnal and rehydration-induced variation of pressure-volume relationships in Pseudotsuga menziesii. Physiologia Plant, 83, 107–116.

    Article  Google Scholar 

  • Ladiges, P. Y. (1975). Some Aspects of tissue water relations in 3 populations of Eucalyptus viminalis Labill. New Phytologist, 75, 53–62.

    Article  Google Scholar 

  • Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell and Environment, 25, 275–294.

    Article  CAS  Google Scholar 

  • Lemcoff, J. H., Guarnaschelli, A. B., Garau, A. M., & Prystupa, P. (2002). Elastic and osmotic adjustments in rooted cuttings of several clones of Eucalyptus camaldulensis Dehnh. from southeastern Australia after a drought. Flora, 197, 134–142.

    Article  Google Scholar 

  • Li, T. H., & Li, S. H. (2005). Leaf responses of micropropagated apple plants to water stress: nonstructural carbohydrate composition and regulatory role of metabolic enzymes. Tree Physiology, 25, 495–504.

    Article  PubMed  CAS  Google Scholar 

  • Li, C. X., Zhong, Z. C., Geng, Y. H., & Schneider, R. (2010). Comparative studies on physiological and biochemical adaptation of Taxodium distichum and Taxodium ascendens seedlings to different soil water regimes. Plant and Soil, 329, 481–494.

    Article  CAS  Google Scholar 

  • Lippold, F., Sanchez, D. H., Musialak, M., et al. (2009). AtMyb41 regulates transcriptional and metabolic responses to osmotic Stress in Arabidopsis. Plant Physiology, 149, 1761–1772.

    Article  PubMed  CAS  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H. C., Li, Q. W., Zhang, Y., & Zhou, Y. H. (2009). Analysis of (-)-shikimic acid in Chinese star anise by GC-MS with selected ion monitoring. Chromatographia, 69, 339–344.

    Article  CAS  Google Scholar 

  • Macfarlane, C., White, D. A., & Adams, M. A. (2004). The apparent feed-forward response to vapour pressure deficit of stomata in droughted, field-grown Eucalyptus globulus Labill. Plant Cell and Environment, 27, 1268–1280.

    Article  Google Scholar 

  • Marasu, A., Secuen, H., Sutbeyaz, Y., & Balci, M. (1998). A convenient synthesis of talo-quercitol (1-Deoxy-neo-Inositol) and vibo-quercitol (1-Deoxy-myo-Inositol) via ene reaction of singlet oxygen. Journal of Organic Chemistry, 63, 2039–2041.

    Article  Google Scholar 

  • Marsh, N. R., & Adams, M. A. (1995). Decline of Eucalyptus tereticornis near Bairnsdale, Victoria: Insect Herbivory and Nitrogen Fractions in Sap and Foliage. Australian Journal of Botany, 43, 39–49.

    Article  Google Scholar 

  • Mawhinney, T. P., Robinett, R. S. R., Atalay, A., & Madson, M. A. (1986). Analysis of amino-acids as their tert-butyldimethylsilyl derivatives by gas-liquid-chromatography and mass-spectrometry. Journal of Chromatography, 358, 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Medrano, H., Bota, J., Abadia, A., Sampol, B., Escalona, J. M., & Flexas, J. (2002). Effects of drought on light-energy dissipation mechanisms in high-light-acclimated, field-grown grapevines. Functional Plant Biology, 29, 1197–1207.

    Article  CAS  Google Scholar 

  • Merchant, A., & Adams, M. (2005). Stable osmotica in Eucalyptus spathulata - responses to salt and water deficit stress. Functional Plant Biology, 32, 797–805.

    Article  CAS  Google Scholar 

  • Merchant, A., Arndt, S.K., Douglas, M.R., et al. (2010). Seasonal changes in carbohydrates, cyclitols, and water relations of 3 field grown Eucalyptus species from contrasting taxonomy on a common site. Annals of Forest Science, 67. doi:10.1051/forest/2009085.

  • Merchant, A., Richter, A., Popp, M., & Adams, M. A. (2006a). Targeted metabolic profiling provides a functional link among eucalypt taxonomy, physiology and evolution. Phytochemistry, 67, 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Merchant, A., Tausz, M., Arndt, S. K., & Adams, M. A. (2006b). Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant Cell and Environment, 29, 2017–2029.

    Article  CAS  Google Scholar 

  • Morgan, J. M. (1984). Osmoregulation and Water-Stress in Higher-Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 35, 299–319.

    Article  Google Scholar 

  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell and Environment, 25, 239–250.

    Article  CAS  Google Scholar 

  • Myers, B. A., & Neales, T. F. (1986). Osmotic Adjustment, Induced by Drought, in Seedlings of 3 Eucalyptus Species. Aust. Journal of Plant Physiology, 13, 597–603.

    Google Scholar 

  • Nanjo, T., Kobayashi, M., Yoshiba, Y., et al. (1999). Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant Journal, 18, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Orthen, B., & Popp, M. (2000). Cyclitols as cryoprotectants for spinach and chickpea thylakoids. Environmental and Experimental Botany, 44, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Plouvier, V. (1963). Distribution of aliphatic polyols and cyclitols. In T. Swain (Ed.), Chemical plant taxonomy (pp. 313–336). London: Academic Press.

    Google Scholar 

  • Rawat, J. S., & Banerjee, S. P. (1998). The influence of salinity on growth, biomass production and photosynthesis of Eucalyptus camaldulensis Dehnh. and Dalbergia sissoo Roxb. seedlings. Plant and Soil, 205, 163–169.

    Article  CAS  Google Scholar 

  • Robichaux, B. S. (1984). Variation in the tissue water relations of two sympatric Hawaiian Dubautia species and their natural hybrid. Oecologia, 65, 75–81.

    Article  Google Scholar 

  • Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant Journal, 23, 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Salekdeh, G. H., Siopongco, J., Wade, L. J., Ghareyazie, B., & Bennett, J. (2002). A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Research, 76, 199–219.

    Article  Google Scholar 

  • Sanchez, D. H., Szymanski, J., Erban, A., Udvardi, M. K., & Kopka, J. (2010). Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus. Plant Cell and Environment, 33, 468–480.

    Article  CAS  Google Scholar 

  • Schauer, N., Steinhauser, D., Strelkov, S., et al. (2005). GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters, 579, 1332–1337.

    Article  PubMed  CAS  Google Scholar 

  • Shao, H. B., Chu, L. Y., Jaleel, C. A., Manivannan, P., Panneerselvam, R., & Shao, M. A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Critical Reviews in Biotechnology, 29, 131–151.

    Article  PubMed  CAS  Google Scholar 

  • Shelp, B. J., Bown, A. W., & McLean, M. D. (1999). Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science, 4, 446–452.

    Article  PubMed  Google Scholar 

  • Shen, B., Hohmann, S., Jensen, R. G., & Bohnert, H. J. (1999). Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiology, 121, 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Singh, K., Kumar, S., Rani, A., Gulati, A., & Ahuja, P. (2009). Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct. Integrated Genomics, 9, 125–134.

    Article  CAS  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Article  CAS  Google Scholar 

  • Tuomela, K. (1997). Leaf water relations in six provenances of Eucalyptus microtheca: A greenhouse experiment. Forest Ecology and Management, 92, 1–10.

    Article  Google Scholar 

  • Turner, N. C. (1986). Adaptation to water deficits—a changing perspective. Australian Journal of Plant Physiology, 13, 175–190.

    Article  Google Scholar 

  • Turner, N. C., & Jones, M. M. (1980). Turgor maintenance by osmotic adjustment: a review and evaluation. In N. C. Turner & P. J. Kramer (Eds.), Adaptation of plants to water and high temperature stress (pp. 155–172). New York: Wiley-InterScience.

    Google Scholar 

  • Tyree, M. T., Cheung, Y. N. S., MacGregor, M. E., & Talbot, A. J. B. (1978). The characteristics of seasonal and ontogenetic changes in the tissue-water relations of Acer, Populus, Tsuga and Picea. Canadian Journal of Botany, 56, 635–647.

    Article  Google Scholar 

  • Tyree, M. T., & Hammel, H. T. (1972). Measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. Journal of Experimental Botany, 23, 267–282.

    Article  Google Scholar 

  • Urakami, K., Zangiacomi, V., Yamaguchi, K., & Kusuhara, M. (2010). Quantitative metabolome profiling of Illicium anisatum by capillary electrophoresis time-of-flight mass spectrometry. Biomedical Research-Tokyo, 31, 161–163.

    Article  PubMed  CAS  Google Scholar 

  • Warren, C. R. (2009). Why is uptake of inorganic N favoured by high temperatures and amino acids by low temperatures? Soil Biology and Biochemistry, 41, 778–784.

    Article  CAS  Google Scholar 

  • Warren, C. R., & Adams, M. A. (2004). Capillary electrophoresis of the major anions and cations in leaf extracts of woody species. Phytochemical Analysis, 15, 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Warren, C. R., Bleby, T. M., & Adams, M. A. (2007). Changes in gas exchange versus leaf solutes as a means to cope with summer drought in Eucalyptus marginata. Oecologia, 154, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Xue, G. P., McIntyre, C. L., Glassop, D., & Shorter, R. (2008). Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Molecular Biology, 67, 197–214.

    Article  PubMed  CAS  Google Scholar 

  • Zwiazek, J. J. (1991). Cell-wall changes in white spruce (Picea glauca) needles subjected to repeated drought stress. Physiologia Plant, 82, 513–518.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Discovery Grant and QEII Fellowship from the Australian Research Council (CR Warren), and a major equipment grant from The University of Sydney. PhD fellowship from Regional Government of Madrid (FJ Cano) and in the frame of the project “SUM2008-00004-C03-01”, funded by the Ministry of Science and Innovation of Spain. Dr Maria Taranto is warmly thanked for assisting with preparation of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Warren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 453 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warren, C.R., Aranda, I. & Cano, F.J. Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress. Metabolomics 8, 186–200 (2012). https://doi.org/10.1007/s11306-011-0299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0299-y

Keywords

Navigation