Skip to main content
Log in

Transcript responses in leaves of ozone-treated beech saplings seasons at an outdoor free air model fumigation site over two growing seasons

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The still most abundant air pollutant, tropospheric ozone, leads to severe oxidative stress in plants. To investigate the ozone responsiveness of trees, we carried out a microarray analysis of beech saplings, grown around a free air lysimeter station in the years 2005 and 2006. The microarrays revealed ozone-responsive expressed sequence tags (ESTs), derived from a suppression subtractive hybridisation cDNA library. Chronic ozone exposure effects were investigated at different time points throughout the whole vegetation period in 2005 and 2006. Significantly regulated ESTs were calculated with R-packages. Different transcript patterns in both years could be related to weather conditions and consequential a different ozone uptake. Fewer transcriptome changes were found in 2005 compared to 2006. Induction of ESTs involved in cell structure, related to stress response and cell walls, signal transduction, as well as disease and defence in July and August indicated ozone-related stress responses in both years. An early response to ozone on primary metabolism, or, more precisely, on plant growth and photosynthesis, was observed in July and August particularly in the year 2006. This study demonstrated a clear transcriptional ozone response of juvenile beech, the most important deciduous tree in Central Europe, under free air conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bagard M, Le Thiec D, Delacote E, Hasenfratz-Sauder M-P, Banvoy J, Gérard J, Dizengremel P, Jolivet Y (2008) Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of leaves. Physiol Plant 134:559–574

    Article  CAS  PubMed  Google Scholar 

  • Bahl A, Loitsch SM, Kahl G (1995) Transcriptional activation of plant defence genes by short-term air pollutant stress. Environ Pollut 89:221–227

    Article  CAS  PubMed  Google Scholar 

  • Bohler S, Bagard M, Oufir M, Planchon S, Hoffmann L, Yoliver Y, Hausman J-F, Dizengremel P, Renaut J (2007) A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 7:1584–1599

    Article  CAS  PubMed  Google Scholar 

  • Cabané M, Pireaux J-C, Léger E, Dizengremel P, Pollet B, Lapierre C (2004) Condensed lignins are synthesized in poplar leaves exposed to ozone. Plant Physiol 134:586–594

    Article  PubMed  Google Scholar 

  • Castagna A, Ranieri A (2009) Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustement. Environ Pollut 157:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Chiron H, Drouet A, Claudot A-C, Eckerskorn C, Trost M, Heller W, Ernst D, Sandermann H (2000) Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.). Plant Mol Biol 44:733–745

    Article  CAS  PubMed  Google Scholar 

  • Cho SK, Kim JE, Park J-A, Eom TJ, Kim WT (2006) Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett 580:3136–3144

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Last RL (1995) Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol 109:203–212

    Article  CAS  PubMed  Google Scholar 

  • Datta SK, Muthukrishnan S (1999) Pathogenesis-related proteins in plants. CRC Press, Boca Raton

    Book  Google Scholar 

  • D'Haese D, Horemans N, De Coen W, Guisez Y (2006) Identification of late O3-responsive genes in Arabidopsis thaliana by cDNA microarray analysis. Physiol Plant 128:70–79

    Article  Google Scholar 

  • Dizengremel P (2001) Effects of ozone on carbon metabolism of forest trees. Plant Physiol Biochem 39:729–742

    Article  CAS  Google Scholar 

  • Eckey-Kaltenbach H, Ernst D, Heller W, Sandermann H (1994) Biochemical plant responses to ozone. IV. Cross-induction of defensive pathways in parsley (Petroselinum crispum L.) plants. Plant Physiol 104:67–74

    CAS  PubMed  Google Scholar 

  • Ernst D, Schraudner M, Langebartels C, Sandermann H (1992) Ozone-induced changes of mRNA levels of ß-1, 3-glucanase, chitinase and ‘pathogenesis-related’ protein 1b in tobacco plants. Plant Mol Biol 20:673–682

    Article  CAS  PubMed  Google Scholar 

  • Fowler D, Cape JN, Coyle M, Flechard G, Kuylenstierna J, Hicks K, Derwent D, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. Water Air Soil Pollut 116:5–32

    Article  CAS  Google Scholar 

  • Gayler S, Klier C, Mueller CW, Weiss W, Winkler JB, Priesack E (2009) Analysing the role of soil properties, initial biomasses and ozone on observed variability of plant growth in a lysimeter study. Plant Soil this issue

  • Gielen B, Löw M, Deckmyn G, Metzger U, Franck F, Heerdt C, Matyssek R, Valcke R, Ceulemans R (2007) Chronic ozone exposure affects leaf senescence of adult beech trees: a chlorophyll fluorescence approach. J Exp Bot 58:785–795

    Article  CAS  PubMed  Google Scholar 

  • Glick RE, Schlagnhaufer CD, Arteca RN, Pell EJ (1995) Ozone-induced ethylene emission accelerates the loss of ribulose-1, 5-bisphosphate carboxylase/oxygenase and nuclear-encoded mRNAs in senescing potato leaves. Plant Physiol 109:891–898

    CAS  PubMed  Google Scholar 

  • Gupta P, Duplessis S, White H, Karnosky DF, Martin F, Podila GK (2005) Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and tropospheric O3. New Phytol 167:129–142

    Article  CAS  PubMed  Google Scholar 

  • He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    Article  CAS  PubMed  Google Scholar 

  • Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change? Environ Pollut 155:453–463

    Article  CAS  PubMed  Google Scholar 

  • Heidenreich B, Haberer G, Mayer K, Sandermann H, Ernst D (2005) cDNA array-analysis of mercury- and ozone-induced genes in Arabidopsis thaliana. Acta Physiol Plant 27:45–51

    Article  CAS  Google Scholar 

  • Hofer N, Alexou M, Heerdt C, Löw M, Werner H, Matyssek R, Rennenberg H, Haberer K (2008) Seasonal differences and within-canopy variations of antioxidants in mature spruce (Picea abies) trees under elevated ozone in a free-air exposure system. Environ Pollut 154:241–253

    Article  CAS  PubMed  Google Scholar 

  • Hubbard C, Singleton D, Rauch M, Jayasinghe S, Cafiso D, Castle D (2000) The secretory carrier membrane protein family: Structure and membrane topology. Mol Biol Cell 11:2933–2947

    CAS  PubMed  Google Scholar 

  • Jehnes S, Betz G, Bahnweg G, Haberer K, Sandermann H, Rennenberg H (2007) Tree internal signalling and defence reactions under ozone exposure in sun and shade leaves of European beech (Fagus sylvatica L.) trees. Plant Biol 9:253–264

    Article  CAS  PubMed  Google Scholar 

  • Jwa NS, Walling LL (2001) Influence of elevated CO2 concentration on disease development in tomato. New Phytol 149:509–518

    Article  CAS  Google Scholar 

  • Kangasjärvi J, Talvinene J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17:783–794

    Article  Google Scholar 

  • Karnosky DF, Werner H, Holopainen T, Percy K, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilmann W, Cox R, Nelson N, Matyssek R (2007) Free-air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190

    Article  CAS  PubMed  Google Scholar 

  • Kiefer E, Heller W, Ernst D (2000) A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol Biol Rep 18:33–39

    Article  CAS  Google Scholar 

  • Kim HS, Delaney TP (2002) Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J 32:151–163

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Monde R-A, Last RL (1998) Superoxide dismutase in Arabidopsis: An eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    Article  CAS  PubMed  Google Scholar 

  • Koch JR, Scherzer AJ, Eshita SM, Davis KR (1998) Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation. Plant Physiol 118:1243–1252

    Article  CAS  Google Scholar 

  • Langebartels C, Wohlgemuth H, Kschieschan S, Grün S, Sandermann H (2002) Oxidative burst and cell death in ozone-exposed plants. Plant Physiol Biochem 40:567–575

    Article  CAS  Google Scholar 

  • Li P, Mane SP, Sioson AA, Robinet CV, Heath LS, Bohnert HJ, Grene R (2006) Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungiella halophila. Plant Cell Environ 29:854–868

    Article  CAS  PubMed  Google Scholar 

  • Löw M, Häberle K-H, Warren CR, Matyssek R (2007) O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure. Plant Biol 9:197–206

    Article  PubMed  Google Scholar 

  • Ludwikow A, Gallois P, Sadowski J (2004) Ozone-induced oxidative stress response in Arabidopsis: transcription profiling by microarray approach. Cell Mol Biol Lett 9:829–842

    CAS  PubMed  Google Scholar 

  • Maccarrone M, Veldink GA, Vliegenhart JFG, Agrò AF (1997) Ozone stress modulates amine oxidase and lipoxygenase expression in lentil (Lens culinaris) seedlings. FEBS Lett 408:241–244

    Article  CAS  PubMed  Google Scholar 

  • Manning WJ, von Tiedemann A (1995) Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant disease. Environ Pollut 88:219–245

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu Ü, Müller-Röber B, Schulz B (2002) Multifunctionality of plant ABC transporters - more than just detoxifiers. Planta 214:345–355

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama T, Tamaoki M, Nakajima N, Aono M, Kubo A, Moriya S, Ichihara T, Suzuki O, Saji H (2002) cDNA microarray assessment for ozone-stressed Arabidopsis thaliana. Environ Pollut 117:191–194

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404

    CAS  Google Scholar 

  • Miller JD, Arteca RN, Pell EJ (1999) Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol 120:1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki S, Fredricksen M, Hollis KC, Poroyko V, Shepley D, Galbraith DW, Long SP, Bohnert HJ (2004) Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3. Field Crops Res 90:47–59

    Article  Google Scholar 

  • Moeder W, Barry CS, Tauriainen AA, Betz C, Tuomainen J, Utriainen M, Grierson D, Sandermann H, Langebartels C, Kangasjärvi J (2002) Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxlic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation an cell death in ozone-exposed tomato. Plant Physiol 130:1918–1926

    Article  CAS  PubMed  Google Scholar 

  • Nunn AJ, Reiter IM, Häberle K-H, Werner H, Langebartels C, Sandermann H, Heerdt C, Fabian P, Matyssek R (2002) "Free-air" ozone canopy fumigation in an old-growth mixed forest: Concept and observations in beech. Phyton 42:105–119

    CAS  Google Scholar 

  • Nunn AJ, Anegg S, Betz G, Simons S, Kalisch G, Seidlitz HK, Grams TEE, Häberle K-H, Matyssek R, Bahnweg G, Sandermann H, Langebartels C (2005a) Role of ethylene in the regulation of cell death and leaf loss in ozone-exposed European beech. Plant Cell Environ 28:886–897

    Article  CAS  Google Scholar 

  • Nunn AJ, Reiter IM, Häberle K-H, Langebartels C, Bahnweg G, Pretzsch H, Sandermann H, Matyssek R (2005b) Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies. Environ Pollut 136:365–369

    Article  CAS  PubMed  Google Scholar 

  • Olbrich M, Betz G, Gerstner E, Langebartels C, Sandermann H, Ernst D (2005) Transcriptome analysis of ozone-responsive genes in leaves of European beech (Fagus sylvatica L.). Plant Biol 5:670–676

    Article  Google Scholar 

  • Olbrich M, Gerstner E, Welzl G, Fleischmann F, Oßwald W, Bahnweg G, Ernst D (2008) Accurate quantification of mRNAs and housekeeping gene selection for quantitative real-time RT-PCR normalization in European beech (Fagus sylvatica L.) during abiotic and biotic stress. Z Naturforsch 63c:574-582

    Google Scholar 

  • Pääkkönen E, Seppänen S, Holopainen T, Kokko H, Kärenlampi S, Kärenlampi L, Kangasjärvi J (1998) Induction of genes for the stress proteins PR-10 and PAL in relation to growth, visible injuries and stomatal conductance in birch (Betula pendula) clones exposed to ozone and/or drought. New Phytol 138:295–305

    Article  Google Scholar 

  • Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiol Plant 100:264–273

    Article  CAS  Google Scholar 

  • Pelloux J, Jolivet Y, Banvoy J, Dizengremel P (2001) Changes in Rubisco and Rubisco activase gene expression and polypeptide content in Pinus halepensis M. subjected to ozone an d drought. Plant Cell Environ 24:123–131

    Article  CAS  Google Scholar 

  • Pritsch K, Ernst D, Fleischmann F, Gayler S, Grams TEE, Göttlein A, Heller W, Koch N, Lang H, Matyssek R, Munch JC, Olbrich M, Scherb H, Stich S, Winkler JB, Schloter M (2007) Plant and soil system responses to ozone after 3 years in a lysimeter study with juvenile beech (Fagus sylvatica L.). Water Air Soil Pollut Foc 8:139–154

    Article  Google Scholar 

  • Puckette MC, Tang YH, Mahalingam R (2008) Transcriptomic changes induced by acute ozone in resistant and sensitive Medicago truncatula accessions. BMC Plant Biol 8:46

    Article  PubMed  Google Scholar 

  • R Development Core Team (2005) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Renaut J, Bohler S, Hausman J-F, Hoffmann L, Sergeant K, Ashan N, Yolivet Y, Dizengremel P (2009) The impact of atmospheric composition on plants: a case study of ozone and poplar. Mass Spec Rev 28:495–516

    Article  CAS  Google Scholar 

  • Ruzsa SM, Mylona P, Scandalios JG (1999) Differential response of antioxidant genes in maize leaves exposed to ozone. Redox Rep 4:95–103

    Article  CAS  PubMed  Google Scholar 

  • Saleem A, Loponen J, Pihlaja K, Oksanen E (2001) Effects of long-term open-field ozone exposure on leaf phenolics of European silver birch (Betula pendula Roth). J Chem Ecol 27:1049–1062

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H (1996) Ozone and plant health. Annu Rev Phytopathol 34:347–366

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50

    Article  Google Scholar 

  • Schloter M, Winkler JB, Aneja M, Koch N, Fleischmann F, Pritsch K, Heller W, Stich S, Grams TEE, Göttlein A, Matyssek R, Munch JC (2005) Short term effects of ozone on the plant-rhizosphere-bulk soil system of young beech. Plant Biol 7:728–736

    Article  CAS  PubMed  Google Scholar 

  • Schütt P, Schuck J, Stimm B (1992) Lexikon der Forstbotanik. Ecomed Verlagsgesellschaft, Landsberg

    Google Scholar 

  • Sharma YK, Davis KR (1994) Ozone-induced expression of stress-related genes in Arabidopsis thaliana. Plant Physiol 105:1089–1096

    CAS  PubMed  Google Scholar 

  • Sharma YK, Davis KR (1997) The effects of ozone on antioxidant responses in plants. Free Rad Biol Med 23:480–488

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki M, Matsuyama T, Kanna M, Nakajima N, Kubo A, Aono M, Saji H (2003a) Differential ozone sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis. Planta 216:552–560

    CAS  PubMed  Google Scholar 

  • Tamaoki M, Nakajima N, Kubo A, Aono M, Matsuyama T, Saji H (2003b) Transcriptome analysis of O3-treated Arabidopsis reveals that multiple signal pathways act mutually antagonistic to induce gene expression. Plant Mol Biol 53:443–456

    Article  CAS  PubMed  Google Scholar 

  • Thiel S, Döhring T, Köfferlein M, Kosak A, Martin P, Seidlitz HK (1996) A phytotron for plant stress research: how far can artificial lighting compare to natural sun light? J Plant Physiol 148:456–463

    CAS  Google Scholar 

  • Tosti N, Pasqualini S, Borgogni A, Ederli L, Falistocco E, Crispi S, Paolocci F (2006) Gene expression profiles of O3-treated Arabidopsis plants. Plant Cell Environ 29:1686–1702

    Article  CAS  PubMed  Google Scholar 

  • Van Sandt VST, Suslov D, Verbelen J-P, Vissenberg K (2007) Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann Bot 100:1467–1473

    Article  PubMed  Google Scholar 

  • Winkler JB, Lang H, Graf W, Munch JC (2009) Experimental setup on field lysimeters for studying effects of elevated ozone and below-ground pathogen infection on a plant-soil-system of juvenile beech (Fagus sylvatica L.). Plant Soil this issue: online

  • Yalpani N, Enyedi AJ, Leon J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372–376

    Article  CAS  Google Scholar 

  • Zinser C, Jungblut T, Heller W, Seidlitz HK, Schnitzler J-P, Ernst D, Sandermann H (2000) The effects of ozone in Scots pine (Pinus sylvestris L.): gene expression, biochemical changes and interactions with UV-B radiation. Plant Cell Environ 23:975–982

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the technical staff of the Department for Environmental Engineering for their excellent assistance and our colleague Werner Heller for critical reading the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 607) and in part by the European Community (Evoltree, 6th Framework Programme; COST Action E52).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Olbrich.

Additional information

Responsible Editor: Yong Chao Liang.

Supplemental data

Below is the link to the electronic supplementary material.

Table S1

Number of ozone-responsive unknown ESTs. (DOC 29 kb)

Table S2

Regulation of gene expression for significantly regulated genes in European beech grown under twice ambient ozone. (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olbrich, M., Gerstner, E., Welzl, G. et al. Transcript responses in leaves of ozone-treated beech saplings seasons at an outdoor free air model fumigation site over two growing seasons. Plant Soil 323, 61–74 (2009). https://doi.org/10.1007/s11104-009-0129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0129-4

Keywords

Navigation