Skip to main content
Log in

A novel approach to computational homogenization and its application to fully coupled two-scale thermomechanics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The paper introduces a novel approach to computational homogenization by bridging the scales from microscale to macroscale. Whenever the microstructure is in an equilibrium state, the macrostructure needs to be in equilibrium, too. The novel approach is based on the concept of representative volume elements, stating that an assemblage of representative elements should be able to resemble the macrostructure. The resulting key assumption is the continuity of the appropriate kinematic fields across both scales. This assumption motivates the following idea. In contrast to existing approaches, where mostly constitutive quantities are homogenized, the balance equations, that drive the considered field quantities, are homogenized. The approach is applied to the fully coupled partial differential equations of thermomechanics solved by the finite element (FE) method. A novel consistent finite homogenization element is given with respect to discretized residual formulations and linearization terms. The presented FE has no restrictions regarding the thermomechanical constitutive laws that are characterizing the microstructure. A first verification of the presented approach is carried out against semi-analytical and reference solutions within the range of one-dimensional small strain thermoelasticity. Further verification is obtained by a comparison to the classical FE\(^2\) method and its different types of boundary conditions within a finite deformation setting of purely mechanical problems. Furthermore, the efficiency of the novel approach is investigated and compared. Finally, structural examples are shown in order to demonstrate the applicability of the presented homogenization framework in case of finite thermo-inelasticity at different length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(\bigcup \) :

Assemble operator

\(\mid \) :

Condition on the given set

\(\mathrm {D}\) :

Gateaux derivative

\(\wedge \) :

Logical and

\({\overline{\Box }}\) :

Macroscopic quantity, e.g., \({\overline{{\varvec{\sigma }}}}\)

\(\dot{\Box }\) :

Material time derivative

\(\partial _{x}\) :

Partial derivative with respect to x

\(\partial _{xy}^2\) :

Second order partial derivative with respect to x, y

\({ \mathrm div }\) :

Spatial divergence operator

\(\text {grad}\) :

Spatial gradient operator

\(\text {sym}\) :

Symmetry operator

\(\text {d}\) :

Total derivative

\({\Box }^T\) :

Transposition operator

\(\forall \) :

Universal quantifier

\(\theta \) :

Absolute temperature

\({\varvec{\mathrm {K}}}\) :

Assembled stiffness matrix

\({\varvec{\sigma }}\) :

Cauchy stress tensor

\(\varvec{\mathcal {B}}_t\) :

Current configuration

\({{\varvec{g}}}\) :

Current metric tensor

\({{\varvec{x}}}\) :

Current position vector

\({{\varvec{F}}}\) :

Deformation gradient

J :

Determinant of deformation gradient

\({{\varvec{u}}}\) :

Displacement vector

\(w_{\text {ext}}\) :

External power term

r :

Internal heat source

\(w_{\text {int}}\) :

Internal power term

\({{\varvec{q}}}\) :

Spatial heat flux vector

\(q_n\) :

Spatial heat flow

\({{\varvec{t}}}\) :

Spatial surface traction

\({{\varvec{d}}}\) :

Symmetric part of spatial velocity gradient

\(\vartheta \) :

Temperature change with respect to reference temperature

\(q_p\) :

Thermal power

\({\varvec{\mathrm {R}}}\) :

Vector of residuals

\({\varvec{\mathrm {x}}}\) :

Vector of unknowns

BVDH:

Boundary value driven approach to computational homogenization

FE:

Finite element

FEM:

Finite element method

LDBC:

Linear displacement boundary conditions

PDBC:

Periodic displacement boundary conditions

PDE:

Partial differential equation

RVE:

Representative volume element

SST:

Substructure

UTBC:

Uniform traction boundary conditions

References

  1. Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234:2175

    Article  MATH  Google Scholar 

  2. Kanouté P, Boso DP, Chaboche JL, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16:31

    Article  MATH  Google Scholar 

  3. E W, Engquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Commun Comput Phys 2:367

    MathSciNet  MATH  Google Scholar 

  4. Babuška I, Andersson B, Smith P, Levin K (1999) Damage analysis of fiber composites—Part I. Statistical analysis on fiber scale. Comput Methods Appl Mech Eng 172:27

    Article  MATH  Google Scholar 

  5. Temizer I, Wu T, Wriggers P (2013) On the optimality of the window method in computational homogenization. Int J Eng Sci 64:66

    Article  MathSciNet  Google Scholar 

  6. Terada K, Hirayama N, Yamamoto K, Muramatsu M, Matsubara S, Nishi S (2016) Numerical plate testing for linear two-scale analyses of composite plates with in-plane periodicity. Int J Numer Methods Eng 105:111

    Article  MathSciNet  Google Scholar 

  7. Temizer I, Wriggers P (2007) An adaptive method for homogenization in orthotropic nonlinear elasticity. Comput Methods Appl Mech Eng 196:3409

    Article  MathSciNet  MATH  Google Scholar 

  8. Ghosh S, Lee K, Moorthy S (1995) Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. Int J Solids Struct 32:27

    Article  MathSciNet  MATH  Google Scholar 

  9. Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83:143

    Article  MathSciNet  MATH  Google Scholar 

  10. Coenen EWC, Kouznetsova VG, Geers MGD (2012) Novel boundary conditions for strain localization analyses in microstructural volume elements. Int J Numer Methods Eng 90:1

    Article  MathSciNet  MATH  Google Scholar 

  11. Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro–macro modeling of heterogeneous materials. Comput Mech 27:37

    Article  MATH  Google Scholar 

  12. Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Methods Eng 55:1285

    Article  MathSciNet  MATH  Google Scholar 

  13. Miehe C (2003) Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput Methods Appl Mech Eng 192:559

    Article  MathSciNet  MATH  Google Scholar 

  14. Miehe C, Lambrecht M, Schotte J (2001) Computational homogenization of materials with microstructure based on incremental variational formulations. In: Miehe C (ed) IUTAM symposium on computational mechanics of solid materials at large strains. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  15. Miehe C, Schotte J, Lambrecht M (2002) Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J Mech Phys Solids 50:2123

    Article  MathSciNet  MATH  Google Scholar 

  16. Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387

    Article  MathSciNet  MATH  Google Scholar 

  17. Terada K, Hori M, Kyoya T, Kikuchi N (2000) Simulation of the multi-scale convergence in computational homogenization approaches. Int J Solids Struct 37:2285

    Article  MATH  Google Scholar 

  18. Geers M, Kouznetsova VG, Brekelmans WAM (2003) Multiscale first-order and second-order computational homogenization of microstructures towards continua. Int J Multiscale Comput Eng 1:371

    Article  Google Scholar 

  19. Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235

    Article  MATH  Google Scholar 

  20. Kouznetsova V, Geers M, Brekelmans W (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193:5525

    Article  MATH  Google Scholar 

  21. Temizer I, Wriggers P (2008) On the computation of the macroscopic tangent for multiscale volumetric homogenization problems. Comput Methods Appl Mech Eng 198:495

    Article  MathSciNet  MATH  Google Scholar 

  22. Ibrahimbegović A, Markovič D (2003) Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures. Comput Methods Appl Mech Eng 192:3089

    Article  MATH  Google Scholar 

  23. Zhang HW, Wu JK, Lv J (2012) A new multiscale computational elasto-plastic analysis of heterogeneous materials. Comput Mech 49:149

    Article  MathSciNet  MATH  Google Scholar 

  24. Özdemir I, Brekelmans WAM, Geers MGD (2008) FE\(^2\) computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput Methods Appl Mech Eng 198:602

    Article  MathSciNet  MATH  Google Scholar 

  25. Mandadapu KK, Sengupta A, Papadopoulos P (2012) A homogenization method for thermomechanical continua using extensive physical quantities. Proc R Soc A 468:1696

    Article  MathSciNet  Google Scholar 

  26. Terada K, Kurumatani M, Ushida T, Kikuchi N (2010) A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer. Comput Mech 46:269

    Article  MathSciNet  MATH  Google Scholar 

  27. Monteiro E, Yvonnet J, He QC (2008) Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Comput Mater Sci 42:704

    Article  Google Scholar 

  28. Temizer I, Wriggers P (2011) Homogenization in finite thermoelasticity. J Mech Phys Solids 59:344

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang HW, Zang S, Bi JY, Schrefler BA (2007) Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. Int J Numer Methods Eng 69:87

    Article  MathSciNet  MATH  Google Scholar 

  30. Temizer I (2012) On the asymptotic expansion treatment of two-scale finite thermoelasticity. Int J Eng Sci 53:74

    Article  MathSciNet  Google Scholar 

  31. Wu T, Temizer I, Wriggers P (2013) Computational thermal homogenization of concrete. Cem Concr Compos 35:59

    Article  Google Scholar 

  32. Wu T, Temizer I, Wriggers P (2014) Multiscale hydro–thermo–chemo-mechanical coupling: application to alkali-silica reaction. Comput Mater Sci 84:381

    Article  Google Scholar 

  33. Fish J, Yu Q (2001) Two-scale damage modeling of brittle composites. Compos Sci Technol 61:2215

    Article  Google Scholar 

  34. Wriggers P, Moftah SO (2006) Mesoscale models for concrete: homogenisation and damage behaviour. Finite Elem Anal Des 42:623

    Article  Google Scholar 

  35. Matouš K, Kulkarni MG, Geubelle PH (2008) Multiscale cohesive failure modeling of heterogeneous adhesives. J Mech Phys Solids 56:1511

    Article  MathSciNet  MATH  Google Scholar 

  36. Hirschberger CB, Ricker S, Steinmann P, Sukumar N (2009) Computational multiscale modelling of heterogeneous material layers. Eng Fract Mech 76:793

    Article  Google Scholar 

  37. Holl M, Loehnert S, Wriggers P (2013) An adaptive multiscale method for crack propagation and crack coalescence. Int J Numer Methods Eng 93:23

    Article  MathSciNet  Google Scholar 

  38. Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc Lond A 326:131

    Article  MATH  Google Scholar 

  39. Waurick M (2013) Homogenization of a class of linear partial differential equations. Asymptot Anal 82:271

    MathSciNet  MATH  Google Scholar 

  40. Popa C, Fleischhauer R, Schneider K, Kaliske M (2014) Formulation and implementation of a constitutive model for semicrystalline polymers. Int J Plast 61:128

    Article  Google Scholar 

  41. Rieger S (2004) Temperaturabhängige Beschreibung visko-elasto-plastischer Deformationen kurzglasfaserverstärkter Thermoplaste: Modellbildung, Numerik und Experimente. PhD Thesis, Universität Stuttgart

  42. Fleischhauer R, Qinami A, Hickmann R, Diestel O, Götze T, Cherif C, Heinrich G, Kaliske M (2015) A thermomechanical interface description and its application to yarn pullout tests. Int J Solids Struct 69–70:531

  43. Božić M, Fleischhauer R, Kaliske M (2015) Thermomechanical modeling of epoxy/glass fiber systems including interphasial properties. Eng Comput 33:1259

    Google Scholar 

  44. Miehe C (1988) Zur Behandlung thermomechanischer Prozesse. PhD Thesis, Universität Hannover

  45. Tømmernes V (2014) Implementation of the Arruda–Boyce material model for polymers in Abaqus. Master’s Thesis, Norwegian University of Science and Technology

Download references

Acknowledgments

This research is financially supported by the Deutsche Forschungsgemeinschaft (DFG) under Contract KA-1163/7, which is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kaliske.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleischhauer, R., Božić, M. & Kaliske, M. A novel approach to computational homogenization and its application to fully coupled two-scale thermomechanics. Comput Mech 58, 769–796 (2016). https://doi.org/10.1007/s00466-016-1315-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1315-x

Keywords

Navigation