Skip to main content
Log in

A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A two-scale thermo-mechanical model for porous solids is derived and is implemented into a multi-scale multi-physics analysis method. The model is derived based on the mathematical homogenization method and can account for the scale effect of unit cells, which is our particular interest in this paper, on macroscopic thermal behavior and, by extension, on macroscopic deformation due to thermal expansion/contraction. The scale effect is thought to be the result of microscopic heat transfer, the amount of which depends on the micro-scale pore size of porous solids. We first formulate a two-scale model by applying the method of asymptotic expansions for homogenization and, by using a simple numerical model, verify the validity and relevancy of the proposed two-scale model by comparing it with a corresponding single-scale direct analysis with detailed numerical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bear J (1988) Dynamics of fluids in porous media. Dover, New York

    MATH  Google Scholar 

  2. Mezedur M, Kaviany M, Moore W (2004) Effect of pore structure, randomness and size on effective mass diffusivity. AIChE J 48: 15–24

    Article  Google Scholar 

  3. Jen TC, Yan TZ (2005) Developing fluid flow and heat transfer in a channel partially filled with porous medium. Int J Heat Mass Transf 48: 3995–4009

    Article  MATH  Google Scholar 

  4. Xu RN, Jiang PX (2008) Numerical simulation of fluid flow in microporous media. Int J Heat Fluid Flow 29: 1447–1455

    Article  Google Scholar 

  5. Benssousan A, Lions JL, Papanicoulau G (1978) Asymptotic analysis for periodic structures. North-Holland, Amsterdam

    Google Scholar 

  6. Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Lecture note in physics, vol 127. Springer, Berlin

    Google Scholar 

  7. Devries F, Dumontet H, Duvaut G, Léné F (1989) Homogenization and damage for composite structures. Int J Num Meth Eng 27: 285–298

    Article  MATH  Google Scholar 

  8. Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element method. Comput Methods Appl Mech Eng 83: 143–198

    Article  MATH  MathSciNet  Google Scholar 

  9. Golanski D, Terada K, Kikuchi N (1997) Macro and micro scale modeling of thermal residual stresses in metal matrix composite surface layers by the homogenization method. Comput Mech 19: 188–202

    Article  Google Scholar 

  10. Terada K, Ito T, Kikuchi N (1998) Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method. Comput Methods Appl Mech Eng 153: 223–257

    Article  MATH  MathSciNet  Google Scholar 

  11. Chung PW, Tamma KK (2001) Homogenization of temperature-dependent thermal conductivity in composite materials. AIAA J Thermophys Heat Transf 15: 10–17

    Article  Google Scholar 

  12. Laschet G (2002) Homogenization of the thermal properties of transpiration cooled multi-layer plates. Comput Methods Appl Mech Eng 191: 4535–4554

    Article  MATH  Google Scholar 

  13. Kamiński M (2003) Homogenization of transient heat transfer problems for some composite materials. Int J Eng Sci 41: 1–29

    Article  Google Scholar 

  14. Özdemir I, Brekelmans WAM, Geers MGD (2008) Computational homogenization for heat conduction in heterogeneous solids. Int J Num Meth Eng 73: 185–204

    Article  MATH  Google Scholar 

  15. Zhang HW, Zhang S, Bi JY, Schrefler BA (2007) Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. Int J Num Meth Eng 69: 87–113

    Article  MATH  MathSciNet  Google Scholar 

  16. Özdemir I, Brekelmans WAM, Geers MGD (2008) FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput Methods Appl Mech Eng 198: 602–613

    Article  Google Scholar 

  17. Terada K, Kikuchi N (2003) Introduction to the method of homogenization. The JSCES lecture note series I, Maruzen, Tokyo (in Japanese)

  18. Hornung U (1991) Homogenization and porous media. Springer, New York

    Google Scholar 

  19. Yu Q, Fish J (2002) Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem. Int J Solids Struct 39: 6429–6452

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang H, Zhang S, Gui X, Bi J (2005) Multiple spatial and temporal scales method for numerical simulation of non-classical heat conduction problems: one dimensional case. Int J Solids Struct 42: 877–899

    Article  MATH  Google Scholar 

  21. Auriault JL (1983) Effective macroscopic description of heat conduction in periodic composites. Int J Heat Mass Transf 26: 861–869

    Article  MATH  Google Scholar 

  22. Terada K, Kikuchi N (1995) Nonlinear homogenization method for practical applications. In: Ghosh S, Ostoja-Starzewski M (eds) Computational methods in micromechanics. AMD, vol 212/MD, vol 62. AMSE, New York, pp 1–16

    Google Scholar 

  23. Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Methods Appl Mech Eng 190: 5427–5464

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Terada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terada, K., Kurumatani, M., Ushida, T. et al. A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer. Comput Mech 46, 269–285 (2010). https://doi.org/10.1007/s00466-009-0400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0400-9

Keywords

Navigation