Skip to main content
Log in

Parameter identification for rubber materials with artificial spatially distributed data

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In general, laboratory tests render only a limited number of experimental data. Consequently, the prediction of material behaviour becomes a difficult task and, moreover, a statistical analysis with a statistically based approach is almost impossible. In order to increase the number of data, a method is introduced to generate artificial data by stochastic simulation. In this way, an arbitrary number of data is available and the process of parameter identification can be analysed statistically. The special challenge is the consideration of spatial problems with inhomogeneous stress/strain fields that are measured with an optical system and have to be fitted to a stochastic model in order to generate artificial data. B-Splines are applied to approximate the measured data in space and time. The aim of the study is an analysis of material parameters due to scattering of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Benjeddou A, Jankovich E, Hadhri T (1993) Determination of the parameters of Ogden’s law using biaxial data and Levenberg-Marquardt-Fletcher algorithm. J Elastom Plast 25(3):224–248

    Article  Google Scholar 

  2. Box GE, Hunter WG, Hunter JS et al (1978) Statistics for experimenters. John Wiley & Sons, Hoboken

    MATH  Google Scholar 

  3. Box GE, Jenkins GM, Reinsel GC (2013) Time series analysis: forecasting and control. Wiley, San Francisco

    Google Scholar 

  4. Brockwell P, Davis R (2009) Time series: theory and methods. Springer, New York

    Google Scholar 

  5. Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    Book  Google Scholar 

  6. Harth T, Schwan S, Lehn J, Kollmann F (2004) Identification of material parameters for inelastic constitutive models: statistical analysis and design of experiments. Int J Plast 20(8–9):1403– 1440

    Article  MATH  Google Scholar 

  7. Hartmann S, Tschöpe T, Schreiber L, Haupt P (2003) Finite deformations of a carbon black-filled rubber. experiment, optical measurement and material parameter identification using finite elements. Eur J Mech A 22(3):309–324

    Article  MATH  Google Scholar 

  8. Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39):4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  9. Koch KR (2010) Three-dimensional nurbs surface estimated by lofting method. Int J Adv Manuf Technol 49(9–12):1059–1068

    Article  Google Scholar 

  10. Kolonko M (2008) Stochastische simulation: grundlagen, algorithmen und anwendungen. Vieweg+Teubner Verlag, Wiesbaden

    Book  Google Scholar 

  11. Krämer S, Rothe S, Hartmann S (2013) Homogeneous stress-strain states computed by 3D-stress algorithms of FE-codes: application to material parameter identification. Eng Comput 31(1):1–19

    Google Scholar 

  12. Kreißig R (1998) Auswertung inhomogener verschiebungsfelder zur Identifikation der parameter elastisch-plastischer deformationsgesetze. Forsch Ing 64(4–5):99–109

    Article  Google Scholar 

  13. Kreißig R, Benedix U, Görke UJ (2001) Statistical aspects of the identification of material parameters for elasto-plastic models. Arch Appl Mech 71(2–3):123–134

    MATH  Google Scholar 

  14. Mahnken R (1998) Theoretische und numerische Aspekte zur Parameteridentifikation und modellierung bei metallischen werkstoffen. Dissertation, Inst. für Baumechanik und Numerische Mechanik

  15. Mahnken R (2004) Identification of material parameters for constitutive equations. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 19. Wiley, New York, pp 637–655

    Google Scholar 

  16. Mahnken R, Stein E (1994) The identification of parameters for visco-plastic models via finite-element methods and gradient methods. Model Simul Mater Sci Eng 2(3A):597

    Article  Google Scholar 

  17. Mahnken R, Stein E (1996) A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput Methods Aappl Mech Eng 136(3):225–258

    Article  MATH  Google Scholar 

  18. MATLAB (2012) version 8.0.0.783 (R2012b). The MathWorks Inc., Natick

  19. GOM mbH (2007) Aramis Benutzerhandbuch-Software v6.1. GOM mbH

  20. Nörenberg N, Mahnken R (2013) A stochastic model for parameter identification of adhesive materials. Arch Appl Mech 83:367– 378

    Article  MATH  Google Scholar 

  21. Ogden R, Saccomandi G, Sgura I (2004) Fitting hyperelastic models to experimental data. Comput Mech 34(6):484–502

    Article  MATH  Google Scholar 

  22. Ogden RW (1997) Non-linear elastic deformations. Courier Dover Publications, New York

    Google Scholar 

  23. Piegl LA, Tiller W (1997) The NURBS book. Springer, New York

    Book  Google Scholar 

  24. Rogers DF (2001) An introduction to NURBS: with historical perspective. Morgan Kaufmann, San Francisco

    Google Scholar 

  25. Scheday G (2003) Theorie und Numerik der Parameteridentifikation von Materialmodellen der finiten elastizitt und inelastizitt auf grundlage optischer feldmessmethoden. Dissertation, Bericht Nr.: I-11, Institut fr Mechanik (Bauwesen), Lehrstuhl I, University of Stuttgart

  26. Schlittgen R (2003) Einführung in die statistik. Wissenschaftsverlag, Oldenbourg

    Google Scholar 

  27. Schmaltz S, Willner K (2014) Comparison of different biaxial tests for the inverse identification of sheet steel material parameters. Strain 50(5):389–403

    Article  Google Scholar 

  28. Schwan S (2000) Identifikation der parameter inelastischer werkstoffmodelle: statistische analyse und versuchsplanung. Dissertation, TU Darmstadt

  29. Steel RGD, Torrie JH (1976) Introduction to statistics. McGraw-Hill series in probability and statistics, New York

    MATH  Google Scholar 

  30. Steinmann P, Betsch P, Stein E (1997) Fe plane stress analysis incorporating arbitrary 3d large strain constitutive models. Eng Comput 14(2):175–201

    Article  Google Scholar 

  31. Twizell E, Ogden R (1983) Non-linear optimization of the material constants in ogden’s stress-deformation function for incompressinle isotropic elastic materials. J Australian Math Soc Ser B 24(04):424–434

    Article  MathSciNet  MATH  Google Scholar 

  32. Widany KU, Mahnken R (2012) Adaptivity for parameter identification of incompressible hyperelastic materials using stabilized tetrahedral elements. Comput Methods Appl Mech Eng 245:117–131

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The financial support of this research by the German Research Foundation (DFG) under Grant MA 1979/16-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Mahnken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nörenberg, N., Mahnken, R. Parameter identification for rubber materials with artificial spatially distributed data. Comput Mech 56, 353–370 (2015). https://doi.org/10.1007/s00466-015-1175-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1175-9

Keywords

Navigation