Skip to main content
Log in

A stochastic model for parameter identification of adhesive materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In practice, there are only a very limited number of experimental data available. Therefore, the prediction of material behaviour is difficult and a statistical analysis with a stochastic-based method is nearly impossible. In order to increase the number of tests based on experimental data, we apply the method of stochastic simulation based on time series analysis. The generated artificial data have the same stochastic behaviour as the experimental data. Advantages of artificial data are the arbitrary number of data available, and as a conclusion, the process of parameter identification can be statistically analysed. Here, we especially have experiments for adhesive materials for substantial tension tests performed at two different strain rates. Artificial data provide a stochastic proved analysis of the parameter identification concerning distribution and deviations. The analysis shows the possible range of the different material parameters and, therefore, gives a detailed view of the identification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Austin M., Belbin L., Meyers J., Doherty M., Luoto M.: Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol. Model. 199(2), 197–216 (2006)

    Article  Google Scholar 

  2. Brockwell P., Davis R.: Time Series: Theory and Methods. Springer, Berlin (2009)

    MATH  Google Scholar 

  3. Chatfield C.: Inverse autocorrelations. J. R. Stat. Soc. Ser. A (Gen.) 142(3), 363–377 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Harth T., Schwan S., Lehn J., Kollmann F.: Identification of material parameters for inelastic constitutive models: statistical analysis and design of experiments. Int. J. Plast. 20(8–9), 1403–1440 (2004)

    Article  MATH  Google Scholar 

  5. Hunniford T., Hickey R.: A simulated annealing technique for generating artificial data to assess concept learning algorithms. Intell. Data Anal. 3(3), 177–189 (1999)

    Article  Google Scholar 

  6. Kolonko M.: Stochastische Simulation: Grundlagen, Algorithmen und Anwendungen. Vieweg+Teubner Verlag, Wiesbaden (2008)

    Book  MATH  Google Scholar 

  7. Mahnken R.: Identification of material parameters for constitutive equations. In: Erwin, S., Borsh, R., Thomas, J. R. Hughes (eds.) Encyclopedia of Computational Mechanics, Chap 19, pp. 637–655. Wiley, New York (2004)

    Google Scholar 

  8. Mahnken R.: Simulation of strength difference coupled to softening in elasto-plasticity for adhesive materials. Int. J. Adhesion Adhesives 32(1), 1–14 (2012)

    Article  Google Scholar 

  9. Mahnken, R., Hentrich, M.: On the combination of a UMAT-subroutine and cohesive elements for simulation of adhesive materials. In: Tagungsband der 17. Deutschsprachige ABAQUS-Benutzerkonferenz (Sept. 19–20 2005)

  10. Mahnken R., Schlimmer M.: Simulation of strength difference in elasto-plasticity for adhesive materials. Int. J. Numer. Methods Eng. 63(10), 1461–1477 (2005)

    Article  MATH  Google Scholar 

  11. Press W.: Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  12. Schlittgen R.: Einführung in die Statistik. Oldenbourg Wissenschaftsverlag, München (2003)

    Google Scholar 

  13. Schlittgen R., Streitberg B.: Zeitreihenanalyse. Oldenbourg Wissenschaftsverlag, München (2001)

    Book  Google Scholar 

  14. Schwan, S.: Identifikation der Parameter inelastischer Werkstoffmodelle: Statistische Analyse und Versuchsplanung. Dissertation, TU Darmstadt (2000)

  15. Stralkowski C., Wu S., Devor R.: Charts for the interpretation and estimation of the second order autoregressive model. Technometrics 12(3), 669–685 (1970)

    Article  Google Scholar 

  16. Stralkowski C., Wu S., Devor R.: Charts for the interpretation and estimation of the second order moving average and mixed first order autoregressive-moving average models. Technometrics 16(2), 275–285 (1974)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Mahnken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nörenberg, N., Mahnken, R. A stochastic model for parameter identification of adhesive materials. Arch Appl Mech 83, 367–378 (2013). https://doi.org/10.1007/s00419-012-0684-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0684-7

Keywords

Navigation