Skip to main content

The Virtual Fields Method to Rubbers Under Medium Strain Rates

  • Conference paper
  • First Online:
Advancement of Optical Methods in Experimental Mechanics, Volume 3

Abstract

This paper describes a dynamic experimental technique for characterizing the uniaxial stress-strain relationship of rubbers under medium strain rate deformation. This method combines the Virtual Fields Method (VFM) and high-speed imaging with digital image correlation. The VFM can be expressed so that force measurement during dynamic loading is no longer required but acceleration data on the specimen surface, which occurs as a result of wave propagation in the specimen, are measured and used as a ‘virtual load cell’. In a previous paper, the authors have utilized this technique for characterizing material parameters for the dynamic behaviour of rubbers using a drop-weight apparatus [Int. J. Solids Struct. 69–70:553–568, 2015]. One limitation of this technique is that the stability of the parameter estimation depends on the length of a specimen. When the loading stress wave reaches the fixed end of the rubber specimen, a static equilibrium state is instantaneously achieved. At this instant, the acceleration fields are no longer able to provide information, and the identification is unstable. In order to overcome this limitation, the present paper proposes a VFM able to produce stable identification even at the equilibrium instant. This procedure utilizes both inertial and material forces, and a new experiment apparatus has been developed for simultaneously measuring these two sets of data. This new procedure is described using results from simulations; then, the experimental system and its results will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Field, J.E., Walley, S.M., Proud, W.G., et al.: Review of experimental techniques for high rate deformation and shock studies. Int. J. Impact Eng. 30(7), 725–775 (2004). doi:10.1016/j.ijimpeng.2004.03.005

    Article  Google Scholar 

  2. Davidson, J.S., Fisher, J.W., Hammons, M.I., et al.: Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast. J. Struct. Eng. 131, 1194–1205 (2005). doi:10.1061/(ASCE)0733-9445(2005)131:8(1194)

    Article  Google Scholar 

  3. Sarva, S.S., Deschanel, S., Boyce, M.C., Chen, W.: Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer (Guildf) 48, 2208–2213 (2007). doi:10.1016/j.polymer.2007.02.058

    Article  Google Scholar 

  4. Song, B., Chen, W.: One-dimensional dynamic compressive behavior of EPDM rubber. J. Eng. Mater. Technol. 125, 294 (2003). doi:10.1115/1.1584492

    Article  MathSciNet  Google Scholar 

  5. Harrigan, J.J., Ahonsi, B., Palamidi, E., Reid, S.R.: Experimental and numerical investigations on the use of polymer Hopkinson pressure bars. Philos. Trans. A Math. Phys. Eng. Sci. 372, 20130201 (2014). doi:10.1098/rsta.2013.0201

    Article  Google Scholar 

  6. Fatt, M.S.H., Bekar, I.: High-speed testing and material modeling of unfilled styrene butadiene vulcanizates at impact rates. J. Mater. Sci. 39, 6885–6899 (2004). doi:10.1023/B:JMSC.0000047530.86758.b9

    Article  Google Scholar 

  7. Mohotti, D., Ali, M., Ngo, T., et al.: Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading. Mater. Des. 53, 830–837 (2014). doi:10.1016/j.matdes.2013.07.020

    Article  Google Scholar 

  8. Niemczura, J., Ravi-Chandar, K.: On the response of rubbers at high strain rates—I: Simple waves. J. Mech. Phys. Solids 59, 423–441 (2011). doi:10.1016/j.jmps.2010.09.006

    Article  MATH  Google Scholar 

  9. Chen, W., Zhang, B., Forrestal, M.J.: A split Hopkinson bar technique for low-impedance materials. Exp. Mech. 39, 81–85 (1999). doi:10.1007/BF02331109

    Article  Google Scholar 

  10. Song, B., Chen, W.: Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials. Exp. Mech. 44, 300–312 (2004). doi:10.1007/BF02427897

    Article  Google Scholar 

  11. Yoon, S., Giannakopoulos, I., Siviour, C.R.: Application of the Virtual Fields Method to the uniaxial behavior of rubbers at medium strain rates. Int. J. Solids Struct. 69–70, 553–568 (2015). doi:10.1016/j.ijsolstr.2015.04.017

    Article  Google Scholar 

  12. Sutton, M.A., Orteu, J.-J., Schreier, H.: Image Correlation for Shape, Motion and Deformation Measurements. Springer, New York (2009)

    Google Scholar 

  13. Pierron, F., Grédiac, M.: The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-Field Deformation Measurements. Springer, New York (2012)

    Book  Google Scholar 

  14. Moulart, R., Pierron, F., Hallett, S., Wisnom, M.: Full-field strain measurement and identification of composites moduli at high strain rate with the virtual fields method. Exp. Mech. 51, 509–536 (2011). doi:10.1007/s11340-010-9433-4

    Article  Google Scholar 

  15. Kim, J.H., Lee, G.A., Lee, M.G.: Determination of dynamic strain hardening parameters using the virtual fields method. Int. J. Autom. Technol. 16, 145–151 (2015). doi:10.1007/s12239-015-0016-3

    Article  Google Scholar 

  16. Pierron, F., Sutton, M.A., Tiwari, V.: Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on an aluminium bar. Exp. Mech. 51, 537–563 (2010). doi:10.1007/s11340-010-9402-y

    Article  Google Scholar 

  17. Pierron, F., Zhu, H., Siviour, C.: Beyond Hopkinson’s bar. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372, 20130195 (2014). doi:10.1098/rsta.2013.0195

    Article  Google Scholar 

  18. Pierron, F., Forquin, P.: Ultra-high-speed full-field deformation measurements on concrete spalling specimens and stiffness identification with the virtual fields method. Strain 48, 388–405 (2012). doi:10.1111/j.1475-1305.2012.00835.x

    Article  Google Scholar 

  19. Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 326, 565–584 (1972). doi:10.1098/rspa.1972.0026

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by the Air Force Office of Scientific Research, Air Force Material Command, USAF under Award Nos. FA8655-12-1-2015 and FA9550-15-1-0448. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purpose notwithstanding any copyright notation thereon. The authors thank S. Fuller and J.L. Jordan of AFOSR and M. Snyder, J. Foley and R. Pollak of EOARD for their support. The authors would like to thank R. Froud and R. Duffin for the construction of the experimental apparatus used in this research, and their helpful advice when designing this apparatus. Finally we thank Professor F. Pierron for his invaluable help with the Virtual Fields Method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-ho Yoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Yoon, Sh., Siviour, C.R. (2017). The Virtual Fields Method to Rubbers Under Medium Strain Rates. In: Yoshida, S., Lamberti, L., Sciammarella, C. (eds) Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41600-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41600-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41599-4

  • Online ISBN: 978-3-319-41600-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics