Skip to main content
Log in

An effective computational tool for parametric studies and identification problems in materials mechanics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Parametric studies and identification problems require to perform repeated analyses, where only a few input parameters are varied among those defining the problem of interest, often associated to complex numerical simulations. In fact, physical phenomena relevant to several practical applications involve coupled material and geometry non-linearities. In these situations, accurate but expensive computations, usually carried out by the finite element method, may be replaced by numerical procedures based on proper orthogonal decomposition combined with radial basis function interpolation. Besides drastically reducing computing times and costs, this approach is capable of retaining the essential features of the considered system responses while filtering most disturbances. These features are illustrated in this paper with specific reference to some elastic–plastic problems. The presented results can however be easily extended to other meaningful engineering situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bui HD (1994) Inverse problems in the mechanics of materials: an introduction. CRC Press, Boca Raton

    Google Scholar 

  2. Kleiber M, Antúnez H, Hien TD, Kowalczyk P (1997) Parameter sensitivity in non-linear mechanics. Theory and finite element computations. Wiley, Chichster

    Google Scholar 

  3. Mroz, Z, Stavroulakis, G (eds) (2004) Parameter identification of materials and structures. Springer, Berlin

    Google Scholar 

  4. Stavroulakis G, Bolzon G, Waszczyszyn Z, Ziemianski L (2003) Inverse analysis. In: Karihaloo B, Ritchie RO, Milne I (eds in chief) Comprehensive structural integrity. Numerical and computational methods, vol 3, chap 13. Elsevier, Amsterdam, pp 685–718

  5. Maier G, Bolzon G, Buljak V, Garbowski T, Miller B (2010) Synergic combinations of computational methods and experiments for structural diagnoses. In: Kuczma M, Wilmanski K (eds) Computer methods in mechanics. Lectures of the CMM 2009. Advanced structured materials series, vol 1. Springer, Berlin, pp 453–476

    Google Scholar 

  6. Bolzon G, Cocchetti G (2003) Direct assessment of structural resistance against pressurized fracture. Int J Num Anal Methods Geomech 27: 353–378

    Article  MATH  Google Scholar 

  7. Calvetti F, di Prisco C, Nova R (2004) Experimental and numerical analysis of soil-pipe interaction. J Geotech Geoenviron Eng 130: 1292–1299

    Article  Google Scholar 

  8. Jang J-I, Choi Y, Lee J-S, Lee Y-H, Kwon D, Gao M, Kania R (2005) Application of instrumented indentation technique for enhanced fitness-for-service assessment of pipeline crack. Int J Fract 131: 15–34

    Article  Google Scholar 

  9. Bolzon G (2010) Collapse mechanisms at the foundation interface of geometrically similar concrete gravity dams. Eng Struct 32: 1304–1311

    Article  Google Scholar 

  10. Collison A, Wade S, Griffiths J, Dehn M (2000) Modelling the impact of predicted climate change on landslide frequency and magnitude in SE England. Eng Geol 55: 205–218

    Article  Google Scholar 

  11. Buczkowski R, Kleiber M (2006) Elasto-plastic statistical model of strongly anisotropic rough surfaces for finite element 3D-contact analysis. Comput Methods Appl Mech Eng 195: 5141–5161

    Article  MathSciNet  MATH  Google Scholar 

  12. Ardito R, Cocchetti G (2006) Statistical approach to damage diagnosis of concrete dams by radar monitoring: formulation and a pseudo-experimental test. Eng Sruct 28: 2036–2045

    Article  Google Scholar 

  13. De Sortis A, Paoliani P (2007) Statistical analysis and structural identification in concrete dam monitoring. Eng Struct 29: 110–120

    Article  Google Scholar 

  14. Ardito R, Maier G, Massalongo G (2008) Diagnostics analysis of concrete dams based on seasonal hydrostatic loading. Eng Struct 30: 3176–3185

    Article  Google Scholar 

  15. Valdebenito MA, Schuëller GI (2010) Design of maintenance schedules for fatigue-prone metallic components using reliability-based optimization. Comput Methods Appl Mech Eng 199: 2305–2318

    Article  Google Scholar 

  16. Gao W, Song C, Tin-Loi F (2010) Probabilistic interval analysis for structures with uncertainty. Struct Saf 32: 191–199

    Article  Google Scholar 

  17. Kaminski M (2010) A generalized stochastic perturbation technique for plasticity problems. Comput Mech 45: 349–361

    Article  MathSciNet  MATH  Google Scholar 

  18. Bolzon G, Fedele R, Maier G (2002) Parameter identification of a cohesive crack model by Kalman filter. Comput Methods Appl Mech Eng 191: 2847–2871

    Article  MATH  Google Scholar 

  19. Marcuzzi F (2009) Space and time localization for the estimation of distributed parameters in a finite element model. Comput Methods Appl Mech Eng 198: 3020–3025

    Article  Google Scholar 

  20. Aoki S, Amaya K, Sahashi M, Nakamura T (1997) Identification of Gurson’s material constants by using Kalman filter. Comput Mech 19: 501–506

    Article  MATH  Google Scholar 

  21. Corigliano A, Mariani S, Orsatti B (2000) Identification of Gurson–Tvergaard material model parameters via Kalman filtering, technique: I Theory. Int J Fract 104: 349–373

    Article  Google Scholar 

  22. Nakamura T, Wang T, Sampath S (2000) Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater 48: 4293–4306

    Article  Google Scholar 

  23. Bocciarelli M, Bolzon G, Maier G (2008) A constitutive model of metal–ceramic functionally graded material behavior: formulation and parameter identification. Comput Mater Sci 43: 16–26

    Article  Google Scholar 

  24. Bocciarelli M, Bolzon G (2009) Indentation and imprint mapping for the identification of interface properties in film-substrate systems. Int J Fract 155: 1–17

    Article  Google Scholar 

  25. Ageno M, Bolzon G, Maier G (2009) Mechanical characterisation of free-standing elastoplastic foils by means of membranometric measurements and inverse analysis. Struct Multidiscip Optim 38: 229–243

    Article  Google Scholar 

  26. Druault P, Guibert P, Alizon F (2005) Use of proper orthogonal decomposition for time interpolation from PIV data. Application to the cycle-to-cycle variation analysis of in-cylinder engine flows. Exp Fluids 39: 1009–1023

    Article  Google Scholar 

  27. Deparis S, Rozza G (2009) Reduced basis method for multi-parameter-dependent steady Navier–Stokes equations: Applications to natural convection in a cavity. J Comput Phys 228: 4359–4378

    Article  MathSciNet  MATH  Google Scholar 

  28. Huynh DBP, Knezevic DJ, Chen Y, Hesthaven JS, Patera AT (2010) A natural-norm successive constraint method for inf-sup lower bounds. Comput Methods Appl Mech Eng 199: 1963–1975

    Article  MathSciNet  Google Scholar 

  29. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Methods Progr Biomed 91: 223–231

    Article  Google Scholar 

  30. Ostrowski Z, Bialecki RA, Kassab AJ (2005) Estimation of constant thermal conductivity by use of proper orthogonal decomposition. Comput Mech 37: 52–59

    Article  MATH  Google Scholar 

  31. Ostrowski Z, Bialecki RA, Kassab AJ (2008) Solving inverse heat conduction problems using trained POD-RBF network. Inv Problems Sci Eng 16: 705–714

    Article  Google Scholar 

  32. Katayama T (2005) Subspace methods for system identification. Springer, Berlin

    MATH  Google Scholar 

  33. Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78: 808–817

    Google Scholar 

  34. Ly HV, Tran HT (2001) Modeling and control of physical processes using proper orthogonal decomposition. Math Comput Model 33: 223–236

    Article  MATH  Google Scholar 

  35. Liang YC, Lee HP, Lim SP, Lin WZ, Lee KH, Wu CG (2002) Proper orthogonal decomposition and its applications. Part I: theory. J Sound Vib 252: 527–544

    Article  MathSciNet  Google Scholar 

  36. Buhmann MD (2003) Radial basis functions. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  37. Levasseur S, Malecot Y, Boulon M, Flavigny E (2009) Statistical inverse analysis based on genetic algorithm and principal component analysis: method and developments using synthetic data. Int J Numer Anal Meth Geomech 33: 1485–1511

    Article  MATH  Google Scholar 

  38. Bolzon G, Buljak V (2010) An indentation based technique to detect in-depth residual stress profiles induced by surface treatment of metal components. Fat Fract Eng Mat Struct 34: 97–107

    Article  Google Scholar 

  39. Bolzon G, Maier G, Panico M (2004) Material model calibration by indentation, imprint mapping and inverse analysis. Int J Solids Struct 41: 2957–2975

    Article  MATH  Google Scholar 

  40. Bocciarelli M, Bolzon G, Maier G (2005) Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping. Mech Mater 37: 855–868

    Article  Google Scholar 

  41. Maier G, Bocciarelli M, Bolzon G, Fedele R (2006) On inverse analysis in fracture mechanics. Int J Fract 138: 47–73

    Article  MATH  Google Scholar 

  42. Bolzon G, Bocciarelli M, Chiarullo EJ (2008) Mechanical characterization of materials by micro-indentation and AFM scanning. In: Bhushan B, Fuchs H, Yamada H (eds) Applied scanning probe methods, vol 11–13. Springer, Heidelberg, pp 85–120

    Google Scholar 

  43. Bolzon G, Chiarullo EJ, Egizabal P, Estournes C (2010) Constitutive modelling and mechanical characterization of aluminium-based metal matrix composites produced by spark plasma sintering. Mech Mater 42: 548–558

    Article  Google Scholar 

  44. Bhushan B (1999) Handbook of micro/nano tribology. CRC Press, Boca Raton

    Google Scholar 

  45. ABAQUS/Standard: (2005) Theory and user’s manuals, release 6.5-1. HKS Inc., Pawtucket

    Google Scholar 

  46. ISO 6508-1&2 (2005) Metallic materials—Rockwell hardness test

  47. The Math Works Inc. (2004) Matlab user’s guide and optimization toolbox, release 6.13, Natick, MA, USA

  48. Mulford R, Asaro RJ, Sebring RJ (2004) Spherical indentation of ductile power law materials. J Mater Res 19: 2641–2646

    Article  Google Scholar 

  49. Criesfield MA (1997) Non-linear finite element analysis of solids and structures, vol 2. Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Bolzon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolzon, G., Buljak, V. An effective computational tool for parametric studies and identification problems in materials mechanics. Comput Mech 48, 675–687 (2011). https://doi.org/10.1007/s00466-011-0611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0611-8

Keywords

Navigation