Skip to main content
Log in

Indentation and imprint mapping for the identification of interface properties in film-substrate systems

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Indentation tests are frequently employed at present for the identification of material parameters at different scales. An innovative inverse analysis technique, recently proposed by the Authors, combines the traditional indentation test with the mapping of the residual deformations (imprint), thus providing experimental data apt to be used to identify material parameters in film-substrate systems. In this paper, such methodology is enhanced to permit the identification of the fracture properties of the interface between a coating and its substrate once the bulk material parameters are known. In order to make the inverse problem well posed, a further set of experimental data, namely the horizontal displacement field measured on the film external surface, is considered as available experimental information. The sought material parameters are recovered through recursive calculations of the mechanical response of the film-substrate system, performed by a finite strain numerical simulation. The coating and a significant portion of the underlying bulk material are incorporated in the finite element models built up to this purpose, while delamination is accounted for through cohesive elements. The inverse analysis procedure rests on a batch, deterministic approach and conventional optimization algorithms are employed for the minimization of a suitably defined discrepancy norm. Extensive numerical computations have been performed in order to test the performance of the proposed methodology in terms of result accuracy and computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Baqi A, Van der Giessen E (2001) Indentation-induced interface delamination of a strong film on a ductile substrate. Thin Solid Films 381: 143–154

    Article  ADS  CAS  Google Scholar 

  • Abdul-Baqi A, Van der Giessen E (2002) Numerical analysis of indentation-induced cracking of brittle coatings on ductile substrates. Int J Solids Struct 39: 1427–1442

    Article  MATH  Google Scholar 

  • Alexopoulos PS, O’Sullivan TC (1990) Mechanical properties of thin films. Ann Rev Mater Sci 20: 391–420

    Article  CAS  ADS  Google Scholar 

  • Aoki S, Amaya K, Sahashi M, Nakamura T (1997) Identification of Gurson’s material by using Kalman filter. Comput Mech 19: 501–506

    Article  MATH  Google Scholar 

  • Baker SP (1997) Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime. Thin Solid Films 308–309: 289–296

    Article  Google Scholar 

  • Bamnios Y, Douka E, Trochidis A (2002) Crack identification in beam structures using mechanical impedance. J Sound Vib 256: 287–297

    Article  ADS  Google Scholar 

  • Berfield T, Patel J, Shimmin R, Braun P, Lambros J, Sottos N (2007) Micro- and nanoscale deformation measurement of surface and internal planes via digital image correlation. Exp Mech 47: 51–62

    Article  CAS  Google Scholar 

  • Bhattacharya AK, Nix WD (1998) Finite element simulation of indentation experiments. Int J Solids Struct 24: 881–891

    Article  Google Scholar 

  • Bocciarelli M, Bolzon G (2007) Indentation and imprint mapping for the identification of constitutive parameters of thin layers on substrate: perfectly bonded interfaces. Mater Sci Eng A 448: 303–314

    Article  CAS  Google Scholar 

  • Bocciarelli M, Maier G (2007) Indentation and imprint mapping method for identification of residual stresses. Comput Mater Sci 39: 381–392

    Article  CAS  Google Scholar 

  • Bocciarelli M, Bolzon G, Maier G (2005) Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping. Mech Mater 37: 855–868

    Article  Google Scholar 

  • Bocciarelli M, Bolzon G, Maier G (2008) A constitutive model of metal-ceramic functionally graded material behavior: formulation and parameter identification. Comput Mater Sci 43: 16–26

    Article  CAS  Google Scholar 

  • Bolzon G, Corigliano A (1997) A discrete formulation for elastic solids with damaging interfaces. Comput Methods Appl Mech Eng 140: 329–359

    Article  MATH  Google Scholar 

  • Bolzon G, Maier G, Tin-Loi F (1997) On multeplicity of solutions in quasi-brittle fracture computations. Comput Mech 19: 511–516

    Article  MATH  Google Scholar 

  • Bolzon G, Maier G, Panico M (2004) Material model calibration by indentation, imprint mapping and inverse analysis. Int J Solids Struct 41: 2957–2975

    Article  MATH  Google Scholar 

  • Capehart TW, Cheng Y-T (2003) Determining constitutive models from conical indentation: sensitivity analysis. J Mater Res 18: 827–832

    Article  ADS  CAS  Google Scholar 

  • Chantikul P, Lawn GR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness. J Am Ceram Soc 64: 533–543

    Article  Google Scholar 

  • Chasiotis I, Knauss WG (2002) A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy. Exp Mech 42: 51–57

    Article  CAS  Google Scholar 

  • Chen J, Bull SJ (2007) Assessment of the toughness of thin coatings using nanoindentation under displacement control. Thin Solid Films 494: 1–7

    Article  ADS  CAS  Google Scholar 

  • Cho S, Cardenas-Garcia JF, Chasiotis I (2005) Measurement of nanodisplacements and elastic properties of MEMS via the microscopic hole method. Sens Actuators A 120: 163–171

    Article  CAS  Google Scholar 

  • Cho SW, Chasiotis I (2007) Elastic properties and representative volume element of polycrystalline silicon for MEMS. Exp Mech 47: 37–49

    Article  CAS  Google Scholar 

  • Coleman TF, Li Y (1996) An interior trust region approach for nonlinear minimisation subject to bounds. SIAM J Optim 6: 418–445

    Article  MATH  MathSciNet  Google Scholar 

  • Dao N, Chollacoop N, van Vliet KJ, Venkatesh TA, Suresh S (2001) Computational modeling of the forward and reverse problem in instrumented indentation. Acta Mater 49: 3899–3918

    Article  CAS  Google Scholar 

  • Giannakopoulos AE, Suresh S (1999) Determination of elastoplastic properties by instrumented sharp indentation. Scr Mater 40: 1191–1198

    Article  CAS  Google Scholar 

  • Giessibi FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75: 949–983

    Article  ADS  CAS  Google Scholar 

  • Hivart P, Crampon J (2007) Interfacial indentation test and adhesive fracture characteristics of plasma sprayed cermet Cr3C2/Ni-Cr coatings. Mech Mater 39: 998–1005

    Article  Google Scholar 

  • HKS Inc, Pawtucket, RI, USA (2005) ABAQUS/Standard, Theory and User’s Manuals, release 6.5-1

  • Jayaraman S, Hahn GT, Oliver WC, Rubin CA, Bastias PC (1998) Determination of monotonic stress-strain curve of hard materials from ultra-low-load indentation tests. Int J Solids Struct 35: 365–381

    Article  MATH  Google Scholar 

  • Kim J, Jeong J, Lee KR, Kwon D (2003) A new indentation cracking method for evaluating interfacial adhesion energy of hard films. Thin Solid Films 441: 172–179

    Article  ADS  CAS  Google Scholar 

  • Kinbara A, Baba S (1988) Adhesion measurement of non-metallic thin films using a scratch method. Thin Solid Films 163: 67–73

    Article  ADS  CAS  Google Scholar 

  • Kleiber M, Antúnez H, Hien TD, Kowalczyk P (1997) Parameter sensitivity in nonlinear mechanics. Theory and finite element computations. John Wiley & Sons, Chichster

  • Knauss WG, Chasiotis I, Huang Y (2003) Mechanical measurements at the micron and nanometer scale. Mech Mater 35: 217–231

    Article  Google Scholar 

  • Li W, Siegmund T (2003) An analysis of a size effect in indentation delamination of a ductile film on a elastic substrate. Scr Mater 49: 497–502

    Article  CAS  Google Scholar 

  • Li W, Siegmund T (2004) An analysis of the indentation test to determine the interface toughness in a weakly bonded thin film coating-substrate system. Acta Mater 52: 2989–2999

    Article  CAS  Google Scholar 

  • Liu P, Zhang YW, Zeng KY, Lu C, Lam KY (2007) Finite element analysis of interface delamination and buckling in thin film systems by wedge indentation. Eng Fract Mech 74: 1118–1125

    Article  Google Scholar 

  • Maier G, Bocciarelli M, Bolzon G, Fedele R (2006) Inverse analyses in fracture mechanics. Int J Fract 138: 47–73

    Article  MATH  Google Scholar 

  • Mulford R, Asaro RJ, Sebring RJ (2004) Spherical indentation of ductile power law materials. J Mater Res 19: 2641–2646

    Article  ADS  CAS  Google Scholar 

  • Nakamura T, Wang T, Sampath S (2000) Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater 48: 4293–4306

    Article  CAS  Google Scholar 

  • Ohring M (1991) The materials science of thin films. Academic Press, New York

    Google Scholar 

  • Ortiz M, Suresh S (1993) Statistical properties of residual stresses and intergranular fracture in ceramic materials. ASME J Appl Mech 60: 77–84

    Article  Google Scholar 

  • Ponton CB, Rawlings RD (1989) Vickers indentation fracture toughness test. Mater Sci Technol 5:865–872, 961–966

    Google Scholar 

  • Rose JH, Ferrante J, Smith JR (1981) Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett 47: 675–678

    Article  ADS  CAS  Google Scholar 

  • Scrivens W, Luo Y, Sutton M, Collette S, Myrick M, Miney P, Colavita P, Reynolds A, Li X (2007) Development of patterns for digital image correlation measurements at reduced length scales. Exp Mech 47: 63–77

    Article  CAS  Google Scholar 

  • Sekler J, Steinmann PA, Hintermann HE (1988) Scratch test: different critical load determination techniques. Surf Coat Technol 36: 519–529

    Article  CAS  Google Scholar 

  • Stavroulakis GE (1999) Impact-echo from a unilateral interlayer crack. LCP-BEM modelling and neural identification. Eng Fract Mech 62: 165–184

    Article  Google Scholar 

  • Stavroulakis G, Bolzon G, Waszczyszyn Z, Ziemiaski L (2003) Inverse analysis. In: Karihaloo B, Ritchie RO, Milne I(eds) Comprehensive structural integrity. Elsevier Science Ltd, Kidlington (Oxfordshire), UK

    Google Scholar 

  • The Math Works Inc, USA (2004) Matlab 2004. User’s guide and optimization toolbox, release 6.13

  • Vendroux G, Schmidt N, Knauss WG (1998) Submicron deformation field measurements: part 3. Demonstration of deformation determinations. Exp Mech 38: 154–160

    Article  Google Scholar 

  • Vogel D, Grosser V, Schubert A, Michel B (2001) Microdac strain measurement for electronics packaging structures. Opt Lasers Eng 36: 195–211

    Article  Google Scholar 

  • Vogel D, Gollhardt A, Michel B (2002) Micro- and nanomaterials characterization by image correlation methods. Sens Actuators A 99: 165–171

    Article  Google Scholar 

  • Volinsky AA, Moody NR, Gerberich WW (2002) Interfacial toughness measurement for thin film on substrates. Acta Mater 50: 441–466

    Article  CAS  Google Scholar 

  • Wang Y, Cuitino AM (2002) Full-field measurements of heterogeheous deformation patterns on polymeric foam using digital image correlation. Int J Solids Struct 39: 3777–3796

    Article  Google Scholar 

  • Xiaodong L, Dongfeng D, Bhushan B (1997) Fracture mechanisms of thin amorphous carbon films in nano-indentation. Acta Mater 45: 4453–4461

    Article  Google Scholar 

  • Xu XP, Needleman A (1993) Void nucleation by inclusion debonding in a crystal. Model Simul Mater Sci Eng 1: 111–132

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bolzon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocciarelli, M., Bolzon, G. Indentation and imprint mapping for the identification of interface properties in film-substrate systems. Int J Fract 155, 1–17 (2009). https://doi.org/10.1007/s10704-009-9314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9314-y

Keywords

Navigation