Skip to main content
Log in

A generalized stochastic perturbation technique for plasticity problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The main aim of this paper is to present an algorithm and the solution to the nonlinear plasticity problems with random parameters. This methodology is based on the finite element method covering physical and geometrical nonlinearities and, on the other hand, on the generalized nth order stochastic perturbation method. The perturbation approach resulting from the Taylor series expansion with uncertain parameters is provided in two different ways: (i) via the straightforward differentiation of the initial incremental equation and (ii) using the modified response surface method. This methodology is illustrated with the analysis of the elasto-plastic plane truss with random Young’s modulus leading to the determination of the probabilistic moments by the hybrid stochastic symbolic-finite element method computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buryachenko V (1999) Elastic–plastic behavior of elastically homogeneous materials with a random field of inclusions. Int J Plast 15: 687–720

    Article  MATH  Google Scholar 

  2. Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24: 1642–1693

    Article  MATH  Google Scholar 

  3. Garmestani H, Lin S, Adams BL (1998) Statistical continuum theory for inelastic behavior of a two-phase medium. Int J Plast 14(8): 719–731

    Article  MATH  Google Scholar 

  4. Gutierrez MA, de Borst R (1999) Numerical analysis of localization using a viscoplastic regularization: influence of stochastic material defects. Int J Numer Methods Eng 44: 1823–1841

    Article  MATH  Google Scholar 

  5. Harth T et al (2004) Identification of material parameters for inelastic constitutive models: statistical analysis and design of experiments. Int J Plast 20: 1403–1440

    Article  MATH  Google Scholar 

  6. Hinton E, Owen DRJ (1977) Finite element programming. Academic Press, New York

    Google Scholar 

  7. Jefferson G et al (2005) Two-point probability distribution function analysis of co-polymer nano-composites. Int J Plast 21: 185–198

    Article  MATH  Google Scholar 

  8. Kamiński M (2007) Generalized perturbation-based stochastic finite element method in elastostatics. Comput Struct 85(10): 586–594

    Article  Google Scholar 

  9. Kamiński M (1999) Probabilistic characterization of porous plasticity in solids. Mech Res Commun 26(1): 99–106

    Article  MATH  Google Scholar 

  10. Kaneko K, Oyamada T (2000) A viscoplastic constitutive model with effect of aging. Int J Plast 16: 337–357

    Article  MATH  Google Scholar 

  11. Kleiber M, Hien TD (1992) The stochastic finite element method: basic perturbation technique and computational implementation. Wiley, Chichester

    Google Scholar 

  12. Kleiber M, Woźniak CZ (1991) Nonlinear mechanics of structures. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  13. Kleiber M et al (1997) Parameter sensitivity in nonlinear mechanics. Wiley & Sons, New York

    Google Scholar 

  14. Krajcinovic D, Mastilovic S (1999) Statistical models of brittle deformation. Part I. Introduction. Int J Plast 15: 401–426

    Article  MATH  Google Scholar 

  15. Mastilovic S, Krajcinovic D (1999) Statistical models of brittle deformation. Part II. Computer simulations. Int J Plast 15: 427–456

    Article  Google Scholar 

  16. Lin YK (1967) Probabilistic theory of structural dynamics. McGraw-Hill, New York

    Google Scholar 

  17. Liu WK, Belytschko T, Mani A (1986) Random field finite elements. Int J Numer Methods Eng 23: 1831–1845

    Article  MATH  MathSciNet  Google Scholar 

  18. Melchers RE (2002) Structural reliability analysis and prediction. Wiley & Sons, New York

    Google Scholar 

  19. Oden JT (1972) Finite elements of nonlinear continua. McGraw-Hill, New York

    MATH  Google Scholar 

  20. Ostoja-Starzewski M (2005) Scale effects in plasticity of random media: status and challenges. Int J Plast 21: 1119–1160

    Article  MATH  Google Scholar 

  21. Owen DRJ, Hinton E (1980) Finite elements in plasticity—theory and practice. Pineridge Press, Swansea

    MATH  Google Scholar 

  22. Rinaldi A, Lai YC (2007) Statistical damage theory of 2D lattices: energetics and physical foundations of damage parameter. Int J Plast 23: 1796–1825

    Article  MATH  Google Scholar 

  23. Zaiser M, Aifantis EC (2006) Randomness and slip avalanches in gradient plasticity. Int J Plast 22: 1432–1455

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Marek Kamiński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamiński, M.M. A generalized stochastic perturbation technique for plasticity problems. Comput Mech 45, 349–361 (2010). https://doi.org/10.1007/s00466-009-0455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0455-7

Keywords

Navigation