Skip to main content
Log in

Enhancement of ε-poly-l-lysine production in Streptomyces griseofuscus by addition of exogenous astaxanthin

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Addition of exogenous astaxanthin for improving ε-poly-l-lysine (ε-PL) production in Streptomyces griseofuscus was investigated in this study. By this unique strategy, the ε-PL production in shaker-flask fermentation was 2.48 g/L, which was 67.5% higher than the control at the addition dosage of 1.0 g/L, owing to the oxidation resistance of astaxanthin. In fed-batch fermentation, the ε-PL production reached 36.1 g/L, a 36.3% increase compared to the control. Intracellular response for oxidation in S. griseofuscus such as ROS generation and lipid peroxidation was reduced by astaxanthin addition. Illumina RNA deep sequencing (RNA-seq) technology further revealed that S. griseofuscus with astaxanthin addition showed down-regulated transcriptions of genes involved in oxidative stress. This research proved that the beneficial effect of astaxanthin addition was far better than glutathione (GSH) owing to the stronger antioxidant capacity, and provided a novel approach to regulate ε-PL synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hiraki J, Ichikawa T, Ninomiya S (2003) Use of ADME studies to confirm the safety of polylysine as a preservative in food. Regul Toxicol Pharm 37:328–340. https://doi.org/10.1016/S0273-2300(03)00029-1

    Article  CAS  Google Scholar 

  2. Shih IL, Shen MH (2006) Microbial synthesis of poly (ε-lysine) and its various applications. Bioresour Technol 97:1148–1159. https://doi.org/10.1016/j.biortech.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  3. Hiraki J, Masakazu H, Hiroshi M, Yoshikazu I (1998) Improved ε-poly-l-lysine production of an S-(2-aminoethyl)-l-cysteine resistant mutant of Streptomyces albulus. Seibutsu Kogakkaishi 76:487–493. https://doi.org/10.1016/S0922-338X(99)80023-3

    Article  CAS  Google Scholar 

  4. Li S, Li F, Chen XS, Tang L, Mao ZG (2012) Genome shuffling enhanced ε-poly-l-lysine production by improving glucose tolerance of Streptomyces graminearus. Appl Biochem Biotechnol 166:414–423. https://doi.org/10.1007/s12010-011-9437-2

    Article  CAS  PubMed  Google Scholar 

  5. Li S, Chen XS, Dong CD, Zhao FL, Mao ZG (2013) Combining genome shuffling and interspecific hybridization among Streptomyces improved ε-poly-l-lysine production. Appl Biochem Biotechnol 169:338–350. https://doi.org/10.1007/s12010-012-9969-0

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Chen XS, Wu GY, Zeng X, Ren XD, Li S, Mao ZG (2016) Genome shuffling and gentamicin-resistance to improve ε-poly-l-lysine productivity of Streptomyces albulus W-156. Appl Biochem Biotechnol 180:1601–1617. https://doi.org/10.1007/s12010-016-2190-9

    Article  CAS  PubMed  Google Scholar 

  7. Wang L, Chen XS, Wu GY, Zeng X, Ren XD, Li S, Mao ZG (2017) Enhanced ε-poly-l-lysine production by inducing double antibiotic-resistant mutations in Streptomyces albulus. Bioprocess Biosyst Eng 40:271–283. https://doi.org/10.1007/s00449-016-1695-5

    Article  CAS  PubMed  Google Scholar 

  8. Rao YM, Sureshkumar GK (2001) Improvement in bioreactor productivities using free radicals: HOCl-induced overproduction of xanthan gum from Xanthomonas campestris and its mechanism. Biotechnol Bioeng 72:62–68. https://doi.org/10.1002/1097-0290(20010105)72:1%3c62:AID-BIT9%3e3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  9. Wei ZH, Bai L, Deng Z, Zhong JJ (2011) Enhanced production of validamycin A by H2O2-induced reactive oxygen species in fermentation of Streptomyces hygroscopicus 5008. Bioresour Technol 102:1783–1787. https://doi.org/10.1016/j.biortech.2010.08.114

    Article  CAS  PubMed  Google Scholar 

  10. González-Siso MI, Garcia-Leiro A, Tarrio N, Cerdán ME (2009) Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microb Cell Fact 8:46–49. https://doi.org/10.1186/1475-2859-8-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zuin A, Castellano-Esteve D, AytéJ Hidalgo E (2010) Living on the edge: stress and activation of stress responses promote lifespan extension. Aging 2:231–237. https://doi.org/10.18632/aging.100133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oliveira G, Tahara E, Gombert A, Barros M, Kowaltowski A (2008) Increased aerobic metabolism is essential for the beneficial effects of caloric restriction on yeast life span. J Bioenerg Biomembr 40:381–388. https://doi.org/10.1007/s10863-008-9159-5

    Article  CAS  PubMed  Google Scholar 

  13. Yan P, Sun HB, Lu PQ, Liu HL, Tang L (2018) Enhancement of ε-poly-l-lysine synthesis in Streptomyces by exogenous glutathione. Bioprocess Biosyst Eng 41:129–134. https://doi.org/10.1007/s00449-017-1849-0

    Article  CAS  PubMed  Google Scholar 

  14. Zeng X, Chen XS, Gao Y, Ren XD (2015) Continuously high reactive oxygen species generation decreased the specific ε-poly-l-lysine formation rate in fed-batch fermentation using glucose and glycerol as a mixed carbon source. Process Biochem 50:1993–2003. https://doi.org/10.1016/j.procbio.2015.09.012

    Article  CAS  Google Scholar 

  15. Bierman M, Logan R, O’Brian K, Seno ET, Rao RN (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces sp. Gene 116:43–49. https://doi.org/10.1016/0378-1119(92)90627-2

    Article  CAS  Google Scholar 

  16. Kahar P, Iwata T, Hiraki J, Park EY, Okabe M (2001) Enhancement of ε-poly-lysine production by Streptomyces albulus strain 410 using pH control. J Biosci Bioeng 91:190–194. https://doi.org/10.1016/S1389-1723(01)80064-5

    Article  CAS  PubMed  Google Scholar 

  17. Huang JC, Zhong YJ, Liu J (2013) Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 17:59–67. https://doi.org/10.1016/j.ymben.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  18. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  19. Pokora W, Reszka J, Tukaj Z (2003) Activities of superoxide dismutase (SOD) isoforms during growth of Scenedesmus (chlorophyta) species and strains grown in batch-cultures. Acta Physiol Plant 25:375–384. https://doi.org/10.1007/s11738-003-0019-y

    Article  CAS  Google Scholar 

  20. Qi K, Xia XX, Zhong JJ (2015) Enhanced anti-oxidative activity and lignocellulosic ethanol production by biotin addition to medium in Pichia guilliermondii fermentation. Bioresour Technol 189:36–43. https://doi.org/10.1016/j.biortech.2015.02.089

    Article  CAS  PubMed  Google Scholar 

  21. Deng X, Xia Y, Hu W, Zhang H, Shen Z (2010) Cadmium-induced oxidative damage and protective effects of N-acetyl-l-cysteine against cadmium toxicity in Solanum nigrum L. J Hazard Mater 180:722–729. https://doi.org/10.1016/j.jhazmat.2010.04.099

    Article  CAS  PubMed  Google Scholar 

  22. Yamanaka K, Kito N, Imokawa Y, Maruyama C, Utagawa T (2010) Mechanism of ε-poly-l-lysine production and accumulation revealed by identification and analysis of a ε-poly-l-lysine-degrading enzyme. Appl Environ Microbiol 76:5669–5675. https://doi.org/10.1128/AEM.00853-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grosicka-Maciag E, Kurpios-Piec D, Szumilo M, Grzela T (2011) Protective effect of N-acetyl-l-cysteine against maneb induced oxidative and apoptotic injury in Chinese hamster V79 cells. Food Chem Toxicol 49:1020–1025. https://doi.org/10.1016/j.fct.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  24. Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol 153:175–190. https://doi.org/10.1016/j.cbpc.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  25. Raman S, Song T, Bardarov S, Jacobs WR, Husson R (2001) The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J Bacteriol 183:6119–6125. https://doi.org/10.2514/6.2010-7840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Shandong Natural Science Foundation (ZR2019BC044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ji, J., Hu, S. et al. Enhancement of ε-poly-l-lysine production in Streptomyces griseofuscus by addition of exogenous astaxanthin. Bioprocess Biosyst Eng 43, 1813–1821 (2020). https://doi.org/10.1007/s00449-020-02372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02372-y

Keywords

Navigation