Skip to main content
Log in

Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The effect of 0.3 and 0.7 M NaCl on biomass yield, total nitrogen content, intracellular lipid content, and fatty acid profile of the lipids of the alga Botryococcus braunii IPPAS H-252 in different phases of the culture cycle was studied. The presence of sodium chloride in the medium inhibited the growth of algal cells for the first 3 days of the experiment, causing a decrease in total nitrogen, enhanced synthesis of triacylglycerols, and considerable changes in the lipid fatty acid profile: decreases in polyenoic acid contents (from 68.34% to 29.38% and 12.8%) and proportions of long-chain saturated acids (from 0.53% to 5.3% and 14.13% of the total fatty acids) at 0.3 M NaCl and 0.7 M NaCl, respectively. In later phases of the culture, at 0.3 M NaCl, the content of polyenoic acids rose to the values characteristic of the active growth phase of this alga. At 0.7 M NaCl, the proportion of polyenoic acids grew less significantly, but biomass concentration and total nitrogen increased, similarly to the experiment with 0.3 M NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Hasan RH, Ghannoum MA, Sallal A-K, Abu-Elteen KH, Radwan SS (1987) Correlative changes of growth, pigmentation and lipid composition of Dunaliella salina in response to halostress. J Gen Microbiol 133:2607–2616

    CAS  Google Scholar 

  • Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81

    Article  CAS  Google Scholar 

  • Christie WW (1989) Gas chromatography and lipids. A practical guide. The Oily Press, Ayr, p 230

    Google Scholar 

  • Elenkov I, Stefanov K, Dimitrova-Konaklieva S, Popov S (1996) Effect of salinity on lipid composition of Cladophora vagabunda. Phytochemistry 42:39–44

    Article  CAS  Google Scholar 

  • Fernandes TA, Iyer V, Apte SK (1993) Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses. Appl Environ Microbiol 59:899–904

    CAS  PubMed  Google Scholar 

  • Gouveia L, Marquez AE, da Silva TL, Reis A (2009) Neochloris oleabundans UTEX1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotech 36:821–826

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  PubMed  Google Scholar 

  • Hagemann M, Wolfel L, Kruger B (1990) Alterations of protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803 after a salt shock. J Gen Microbiol 136:1393–1399

    CAS  Google Scholar 

  • Harwood JL, Jones AL (1989) Lipid metabolism in algae. Adv Bot Res 10:1–53

    Article  Google Scholar 

  • Hu H, Gao K (2006) Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol Lett 28:987–992

    Article  CAS  PubMed  Google Scholar 

  • Huflejt ME, Tremolieres A, Pineau B, Lang JK, Hatheway J, Packer L (1990) Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311. Plant Physiol 94:1512–1521

    Article  CAS  PubMed  Google Scholar 

  • Kalacheva GS, Zhila NO, Volova TG (2001) Lipids of the green alga Botryococcus cultured in a batch mode. Microbiology (Mikrobiologiya) 70:256–262

    CAS  Google Scholar 

  • Kalacheva GS, Zhila NO, Volova TG (2002a) Lipid and hydrocarbon compositions of a collection strain and a wild sample of the green microalga Botryococcus. Aquat Ecol 36:317–330

    Article  CAS  Google Scholar 

  • Kalacheva GS, Zhila NO, Volova TG, Gladyshev MI (2002b) The effect of temperature on the lipid composition of the green alga Botryococcus. Microbiology (Mikrobiologiya) 71:286–293

    CAS  Google Scholar 

  • Kates M (1975) Techniques of lipidology. Isolation, analysis and identification of lipids. Mir, Moscow, p 305

    Google Scholar 

  • Khoumutov G, Fry IV, Huflejt ME, Packer L (1990) Membrane lipid composition, fluidity, and surface charge changes in response to growth of the fresh water cyanobacterium Synechococcus 6311 under high salinity. Arch Biochem Biophys 277:263–267

    Article  Google Scholar 

  • Lee Y-K, Tan H-M, Low C-S (1989) Effect of salinity of medium on cellular fatty acid composition of marine alga Porphyridium cruentum (Rhodophyceae). J Appl Phycol 1:19–23

    Article  CAS  Google Scholar 

  • Li Y, Qin JG (2005) Comparison of growth and lipid content in three Botryococcus braunii strains. J Appl Phycol 17:551–556

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (1999) Chemicals of Botryococcus braunii. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 205–260

    Google Scholar 

  • Rao RA, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564

    Article  CAS  PubMed  Google Scholar 

  • Renaud SM, Parry DL (1994) Microalgae for use in tropical aquaculture II: effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol 6:347–356

    Article  CAS  Google Scholar 

  • Vazquez-Duhalt R, Arredondo-Vega BO (1991) Haloadaptation of the green alga Botryococcus braunii (race A). Phytochemistry 30:2919–2925

    Article  CAS  Google Scholar 

  • Xu X-Q, Beardall J (1997) Effect of salinity on fatty acid composition of a green microalga from an Antarctic hypersaline lake. Phytochemistry 45:655–658

    Article  CAS  Google Scholar 

  • Zhila NO, Kalacheva GS, Volova TG (2005) Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus. J Appl Phycol 17:309–315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Project No. 96 of SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia O. Zhila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhila, N.O., Kalacheva, G.S. & Volova, T.G. Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. J Appl Phycol 23, 47–52 (2011). https://doi.org/10.1007/s10811-010-9532-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-010-9532-8

Keywords

Navigation