Skip to main content
Log in

A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric resistivity survey: 2D resistivity modeling

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Taal Volcano, located in the southwestern part of Luzon Island, Philippines, has frequently experienced catastrophic eruptions from both the Main Crater on Volcano Island and flank eruptions. These eruptions have been magmatic, phreatomagmatic, and hydrothermal, with the latter implying the existence of a large-scale hydrothermal system beneath the volcano. We conducted an electrical resistivity survey using the magnetotelluric method in order to identify the location and geometry of the hydrothermal reservoir and sealing cap rock. Two-dimensional inversion using the observed data indicates four similar resistivity sections. The structure at shallow depths corresponds to volcanic deposits and an aquifer. Below 1 km, the structure features a relatively resistive zone beneath the main crater surrounded by a conductive shell. We interpreted these to be a large hydrothermal reservoir with an impermeable cap rock sealing it. Recent ground deformation detected by GPS measurements suggests that the hydrothermal reservoir is active. The interpreted cap rock thins just beneath the main crater and could easily be destroyed by an imbalance in the hydrothermal system. We conclude that this hydrothermal reservoir plays a significant role in driving catastrophic eruptions that begin with a hydrothermal explosion at the main crater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aizawa K, Ogawa Y, Mishina M, Takahashi K, Nagaoka S, Takagi N, Sakanaka S, Miura T (2009) Structural controls on the 1998 volcanic unrest at Iwate Volcano: relationship between a shallow, electrically resistive body and the possible ascent route of magmatic fluid. J Volcanol Geotherm Res 187:131–139. doi:10.1016/j.jvolgeores.2009.08.009

    Article  Google Scholar 

  • Aizawa K (2010) Groundwater flow beneath volcanoes inferred from electric self-potential and magnetotellurics. Bull Volcanol Soc Jpn 55:251–260 (in Japanese with English figure captions)

    Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, March 2009, 19 pp

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Pet Trans AIME 146:54–62

    Google Scholar 

  • Bartel BA, Hamburger MW, Meertens CM, Lowry AR, Corpuz E (2003) Dynamics of magmatic and hydrothermal systems at Taal Volcano, Philippines, from continuous GPS measurements. J Geophys Res 108:2475. doi:10.1029/2002JB002194

    Article  Google Scholar 

  • Caldwell T, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158:457–469. doi:10.1111/j.1365-246×.2004.02281.x

    Article  Google Scholar 

  • Catane SG, Taniguchi H, Goto A, Givero AP, Mandanas AA (2005) Explosive volcanism in the Philippines. CNEAS Monograph Series 18, Tohoku University Press, pp 54–64

  • Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from EM sounding data. Geophysics 52:289–300. doi:10.1190/1.1442303

    Article  Google Scholar 

  • Delmelle P, Kusakabe M, BernardA FT, De Brouwer S, Del Mundo ET (1998) Geochemical and isotopic evidence for seawater contamination of the hydrothermal system of Taal Volcano, Luzon, the Philippines. Bull Volcanol 59:562–576. doi:10.1007/s004450050210

    Article  Google Scholar 

  • Fikos I, Vargemezis G, Zlotnicki J, Puertollano JR, Alanis PB, Pigtain RC, Villacorte EU, Malipot GA, Sasai Y (2012) Electrical resistivity tomography study of Taal Volcano hydrothermal system, Philippines. Bull Volcanol 74:1821–1831. doi:10.1007/s00445-012-0638-5

    Article  Google Scholar 

  • Fomenko EY, Mogi T (2002) A new computation method for a staggered grid of 3D EM field conservative modeling. Earth Planets Space 54:499–509

    Google Scholar 

  • Harada M, Sabit J, Sasai Y, Alanis PKB, Cordon JM Jr, Corpuz EG, Zlotnicki J, Nagao T, Punongbayan JT (2005) Magnetic and electric field monitoring at Taal Volcano, part I: Magnetic measurements. Proc Jpn Acad 81(B):261–266

    Google Scholar 

  • Harada M, Sasai Y, Zlotnicki J, Tanaka Y, Hase H, Sabit JP, Punongbayan JT, Cordon JM Jr, Villacorte EU, Corpuz EZ, Nagao T (2008) Monitoring of volcanic activity of Taal Volcano (Philippines) by electromagnetic methods. Bull Inst Oceanic Res & Develop, Tokai Univ 29:9–28 (in Japanese with English abstract and figure captions)

    Google Scholar 

  • Hyndman RD, Yamano M, Oleskevich DA (1997) The seismogenic zone of subduction thrust faults. Isl Arc 6:244–260. doi:10.1111/j.1440-1738.1997.tb00175.x

    Article  Google Scholar 

  • Heise W, Caldwell TG, Bibby HM, Bannister SC (2008) Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field. Taupo Volcanic Zone, New Zealand. Geophys J Int 173:740–750. doi:10.1111/j.1365-246×.2008.03737.x

    Article  Google Scholar 

  • Jones KA, Ingham MR, Bibby HM (2008) The hydrothermal vent system of Mount Ruapehu, New Zealand—a high frequency MT survey of the summit plateau. J Volcanol Geotherm Res 176:591–600. doi:10.1016/j.jvolgeores.2008.05.006

    Article  Google Scholar 

  • Kanda W, Tanaka Y, Utsugi M, Takakura S, Hashimoto T, Inoue H (2008) A preparation zone for volcanic explosions beneath Naka-dake crater, Aso Volcano, as inferred from magnetotelluric surveys. J Volcanol Geotherm Res 178:32–45. doi:10.1016/j.jvolgeores.2008.01.022

    Article  Google Scholar 

  • Lee JO, Kang IM, Cho WJ (2010) Smectite alteration and its influence on the barrier properties of smectite clay for a repository. Appl Clay Sci 47:99–104. doi:10.1016/j.clay.2008.10.007

    Article  Google Scholar 

  • Lowry AR, Hamburger MW, Meertens CM, Ramos EG (2001) GPS monitoring of crustal deformation at Taal Volcano, Philippines. J Volcanol Geotherm Res 105:35–47. doi:10.1016/S0377-0273(00)00238-9

    Article  Google Scholar 

  • Maeda Y, Kumagai H, Lacson R, Figueroa MS II, Yamashina T (2013) Source process of long-period seismic events at Taal Volcano, Philippines: vapor transportation and condensation in a shallow hydrothermal fissure. J Geophys Res 118. doi:10.1002/jgrb.50205

  • Manzella A, Volpi G, Zaja A, Meju M (2004) Combined TEM–MT investigation of shallow-depth resistivity structure of Mt Somma–Vesuvius. J Volcanol Geotherm Res 131:19–32. doi:10.1016/S0377-0273(03)00313-5

    Google Scholar 

  • Mastushima N, Oshima H, Ogawa Y, Takakura S, Satoh H, Utsugi M, Nishida Y (2001) Magma prospecting in Usu Volcano, Hokkaido, Japan, using magnetotelluric soundings. J Volcanol Geotherm Res 109:263–277. doi:10.1016/S0377-0273(00)00320-6

    Article  Google Scholar 

  • Meju MA (2002) Geoelectromagnetic exploration for natural resources: models, case studies and challenges. Surv Geophys 23:133–205. doi:10.1023/A:1015052419222

    Article  Google Scholar 

  • Miklius A, Flower MFJ, Huijsmans JPP, Mukasa SB, Castillo P (1991) Geochemistry of lavas from Taal Volcano, southwestern Luzon, Philippines: evidence for multiple magma supply systems and mantle source heterogeneity. J Petrol 32:593–627. doi:10.1093/petrology/32.3.593

    Article  Google Scholar 

  • Monteiro Santos FA, Trota A, Soares A, Luzio R, Lourenco N, Matos L, Almedia E, Gaspar JL, Miranda JM (2006) An audio-magnetotelluric investigation in Terceira Island (Azores). J Appl Geophys 59:314–323. doi:10.1016/j.jappgeo.2005.12.001

    Article  Google Scholar 

  • Nam MJ, Kim HJ, Song Y, Lee TJ, Su JH (2009) Three-dimensional topographic and bathymetric effects on magnetotelluric responses in Jeju Island, Korea. Geophys J Int 176:457–466. doi:10.1111/j.1365-246×.2008.03993.x

    Article  Google Scholar 

  • Nishigami K, Shibutani T, Ohkura T, Hirata M, Horikawa H, Shimizu K, Matsuo S, Nakao S, Ando M, Bautista BC, Bautista LP, Barcelona ES, Valerio R, Lanuza AG, Chu AV, Villegas JJ, Rasdas AR, Mangao EA, Gabinete E, Punongbayan BJ, Punongbayan RS (1994) Shallow crustal structure beneath Taal Volcano, Philippines, revealed by the 1993 seismic explosion survey. Bull Disaster Prev Res Inst, Kyoto Univ 44:123–138

    Google Scholar 

  • Nurhasan OY, Ujihara N, Tank SB, Honkura Y, Onizawa S, Mori T, Makino M (2006) Two electrical conductors beneath Kusatsu-Shirane Volcano, Japan, imaged by audiomagnetotellurics, and their implications for the hydrothermal system. Earth Planets Space 58:1053–1059

    Google Scholar 

  • Ogawa Y, Uchida T (1996) A two-dimensional magnetotelluric inversion assuming Gaussian static shift. Geophys J Int 126:69–76. doi:10.1111/j.1365-246×.1996.tb05267.x

    Article  Google Scholar 

  • Oskooi B, Pedersen LB, Smirnov M, Árnason K, Eysteinsson H, Manzella A (2005) The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland. Phys Earth Planet Inter 150:183–195. doi:10.1016/j.pepi.2004.08.027

    Article  Google Scholar 

  • Papa RDS, Mamaril AC Sr (2011) History of the biodiversity and limno-ecological studies on Lake Taal with notes on the current state of Philippine limnology. Philipp Sci Lett 4:1–10

    Google Scholar 

  • Partzsch GM, Schilling FR, Arndt J (2000) The influence of partial melting on the electrical behavior of crustal rocks: laboratory examinations, model calculations and geological interpretations. Tectonophysics 317:189–203. doi:10.1016/S0040-1951(99)00320-0

    Article  Google Scholar 

  • Pous J, Heise W, Schnegg PA, Muñoz G, Martí J, Soriano C (2002) Magnetotelluric study of the Las Cañadas caldera (Tenerife, Canary Islands): structural and hydrogeological implications. Earth Planet Sci Lett 204:249–263. doi:10.1016/S0012-821×(02)00956-1

    Article  Google Scholar 

  • Spichak V, Manzella A (2009) Electromagnetic sounding of geothermal zones. Jour Appl Geophys 68:459–478. doi:10.1016/j.jappgeo.2008.05.007

    Article  Google Scholar 

  • Takakura S (1995) Resistivity of Neogene rocks in the Niigata and the Akita oil fields, Japan. Butsuri-Tansa (Geophys Explor) 48:161–175 (in Japanese with English abstract and figure captions)

    Google Scholar 

  • Torres RC, Self S, Punongbayan RS (1995) Attention focuses on Taal: decade volcano of the Philippines. EOS Trans Am Geophys Un 76:241–247

    Article  Google Scholar 

  • Wersin P, Johnson LH, McKinley IG (2007) Performance of the bentonite barrier at temperatures beyond 100°C: a critical review. Phys Chem Earth 32:780–788. doi:10.1016/j.pce.2006.02.051

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New and improved version of Generic Mapping Tools released. EOS Trans Am Geophys Un 79:579

    Article  Google Scholar 

  • Wolfe JA (1980) Eruptions of Taal Volcano 1976–1977. EOS 61:57–58

    Article  Google Scholar 

  • Yamaya Y (2008) Three dimensional resistivity structure of Tarumai Volcano by the magnetotelluric method including the effects of regional structure. PhD thesis, Hokkaido University, Japan, 102 pp

  • Yamaya Y, Mogi T, Hashimoto T, Ichihara H (2009) Hydrothermal system beneath the crater of Tarumai Volcano, Japan: 3-D resistivity structure revealed using audio-magnetotellurics and induction vector. J Volcanol Geotherm Res 187:193–202. doi:10.1016/j.jvolgeores.2009.09.008

    Article  Google Scholar 

  • You SH, Gung Y, Lin CH, Konstantinou KI, Chang TM, Chang ETY, Solidum R (2013) A preliminary seismic study of Taal Volcano, Luzon Island Philippines. J Asian Earth Sci 65:100–106. doi:10.1016/j.jseaes.2012.10.027

    Google Scholar 

  • Zlotnicki J, Sasai Y, Toutain JP, Villacorte EU, Bernard A, Sabit JP, Gordon JM Jr, Corpuz EG, Harada M, Punongbayan JT, Hase H, Nagao T (2009a) Combined electromagnetic, geochemical and thermal surveys of Taal Volcano (Philippines) during the period 2005–2006. Bull Volcanol 71:29–47. doi:10.1007/s00445-008-0205-2

    Article  Google Scholar 

  • Zlotnicki J, Sasai Y, Toutain JP, Villacorte E, PHIVOLCS Team, Yvetot P, Fauquet F, Bernard A (2009b) Electromagnetic and geochemical methods applied to investigations of hydrothermal/volcanic unrests: examples of Taal (Philippines) and Miyake-jima (Japan) volcanoes. Phys Chem Earth 34:394–408. doi:10.1016/j.pce.2008.09.012

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Philippine Institute of Volcanology and Seismology (PHIVOLCS) for their considerable support in the fieldwork. This study was performed as a part of PHIVOLCS-SATREPS project (2010–2014) supported by JICA (Japan International Cooperation Agency) and JST (Japan Science and Technology Agency). Ms. Ma. Antonia V. Bornas at VMEPD (PHIVOLCS) provided us with invaluable information on volcano-geological aspects of Taal. The discussion with Prof. M. Uyeshima at Earthquake Research Institute, University of Tokyo, Dr. H. Hase at Volcanic Fluid Research Center, Tokyo Institute of Technology, and Prof. K. Aizawa at Institute of Seismology and Volcanology, Kyushu University, was greatly valuable for proceeding with our study. Dr. Y. Maeda at Graduate School of Environmental Studies, Nagoya University, gave us helpful comments regarding LP events beneath Taal Volcano. We thank the editors G. Giordano and J. DL White and two anonymous reviewers for their constructive comments, which helped us improve the manuscript. Most figures were created using the Generic Mapping Tools (GMT) software (Wessel and Smith 1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yamaya.

Additional information

Editorial responsibility: G. Giordano

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaya, Y., Alanis, P.K.B., Takeuchi, A. et al. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric resistivity survey: 2D resistivity modeling. Bull Volcanol 75, 729 (2013). https://doi.org/10.1007/s00445-013-0729-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0729-y

Keywords

Navigation