Bulletin of Volcanology

, 75:729 | Cite as

A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric resistivity survey: 2D resistivity modeling

  • Y. YamayaEmail author
  • P. K. B. Alanis
  • A. Takeuchi
  • J. M. CordonJr.
  • T. Mogi
  • T. Hashimoto
  • Y. Sasai
  • T. Nagao
Research Article


Taal Volcano, located in the southwestern part of Luzon Island, Philippines, has frequently experienced catastrophic eruptions from both the Main Crater on Volcano Island and flank eruptions. These eruptions have been magmatic, phreatomagmatic, and hydrothermal, with the latter implying the existence of a large-scale hydrothermal system beneath the volcano. We conducted an electrical resistivity survey using the magnetotelluric method in order to identify the location and geometry of the hydrothermal reservoir and sealing cap rock. Two-dimensional inversion using the observed data indicates four similar resistivity sections. The structure at shallow depths corresponds to volcanic deposits and an aquifer. Below 1 km, the structure features a relatively resistive zone beneath the main crater surrounded by a conductive shell. We interpreted these to be a large hydrothermal reservoir with an impermeable cap rock sealing it. Recent ground deformation detected by GPS measurements suggests that the hydrothermal reservoir is active. The interpreted cap rock thins just beneath the main crater and could easily be destroyed by an imbalance in the hydrothermal system. We conclude that this hydrothermal reservoir plays a significant role in driving catastrophic eruptions that begin with a hydrothermal explosion at the main crater.


Magnetotellurics Resistivity structure Hydrothermal reservoir Taal Volcano 



We would like to thank the Philippine Institute of Volcanology and Seismology (PHIVOLCS) for their considerable support in the fieldwork. This study was performed as a part of PHIVOLCS-SATREPS project (2010–2014) supported by JICA (Japan International Cooperation Agency) and JST (Japan Science and Technology Agency). Ms. Ma. Antonia V. Bornas at VMEPD (PHIVOLCS) provided us with invaluable information on volcano-geological aspects of Taal. The discussion with Prof. M. Uyeshima at Earthquake Research Institute, University of Tokyo, Dr. H. Hase at Volcanic Fluid Research Center, Tokyo Institute of Technology, and Prof. K. Aizawa at Institute of Seismology and Volcanology, Kyushu University, was greatly valuable for proceeding with our study. Dr. Y. Maeda at Graduate School of Environmental Studies, Nagoya University, gave us helpful comments regarding LP events beneath Taal Volcano. We thank the editors G. Giordano and J. DL White and two anonymous reviewers for their constructive comments, which helped us improve the manuscript. Most figures were created using the Generic Mapping Tools (GMT) software (Wessel and Smith 1998).


  1. Aizawa K, Ogawa Y, Mishina M, Takahashi K, Nagaoka S, Takagi N, Sakanaka S, Miura T (2009) Structural controls on the 1998 volcanic unrest at Iwate Volcano: relationship between a shallow, electrically resistive body and the possible ascent route of magmatic fluid. J Volcanol Geotherm Res 187:131–139. doi: 10.1016/j.jvolgeores.2009.08.009 CrossRefGoogle Scholar
  2. Aizawa K (2010) Groundwater flow beneath volcanoes inferred from electric self-potential and magnetotellurics. Bull Volcanol Soc Jpn 55:251–260 (in Japanese with English figure captions)Google Scholar
  3. Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, March 2009, 19 ppGoogle Scholar
  4. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Pet Trans AIME 146:54–62Google Scholar
  5. Bartel BA, Hamburger MW, Meertens CM, Lowry AR, Corpuz E (2003) Dynamics of magmatic and hydrothermal systems at Taal Volcano, Philippines, from continuous GPS measurements. J Geophys Res 108:2475. doi: 10.1029/2002JB002194 CrossRefGoogle Scholar
  6. Caldwell T, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158:457–469. doi: 10.1111/j.1365-246×.2004.02281.x CrossRefGoogle Scholar
  7. Catane SG, Taniguchi H, Goto A, Givero AP, Mandanas AA (2005) Explosive volcanism in the Philippines. CNEAS Monograph Series 18, Tohoku University Press, pp 54–64Google Scholar
  8. Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from EM sounding data. Geophysics 52:289–300. doi: 10.1190/1.1442303 CrossRefGoogle Scholar
  9. Delmelle P, Kusakabe M, BernardA FT, De Brouwer S, Del Mundo ET (1998) Geochemical and isotopic evidence for seawater contamination of the hydrothermal system of Taal Volcano, Luzon, the Philippines. Bull Volcanol 59:562–576. doi: 10.1007/s004450050210 CrossRefGoogle Scholar
  10. Fikos I, Vargemezis G, Zlotnicki J, Puertollano JR, Alanis PB, Pigtain RC, Villacorte EU, Malipot GA, Sasai Y (2012) Electrical resistivity tomography study of Taal Volcano hydrothermal system, Philippines. Bull Volcanol 74:1821–1831. doi: 10.1007/s00445-012-0638-5 CrossRefGoogle Scholar
  11. Fomenko EY, Mogi T (2002) A new computation method for a staggered grid of 3D EM field conservative modeling. Earth Planets Space 54:499–509Google Scholar
  12. Harada M, Sabit J, Sasai Y, Alanis PKB, Cordon JM Jr, Corpuz EG, Zlotnicki J, Nagao T, Punongbayan JT (2005) Magnetic and electric field monitoring at Taal Volcano, part I: Magnetic measurements. Proc Jpn Acad 81(B):261–266Google Scholar
  13. Harada M, Sasai Y, Zlotnicki J, Tanaka Y, Hase H, Sabit JP, Punongbayan JT, Cordon JM Jr, Villacorte EU, Corpuz EZ, Nagao T (2008) Monitoring of volcanic activity of Taal Volcano (Philippines) by electromagnetic methods. Bull Inst Oceanic Res & Develop, Tokai Univ 29:9–28 (in Japanese with English abstract and figure captions)Google Scholar
  14. Hyndman RD, Yamano M, Oleskevich DA (1997) The seismogenic zone of subduction thrust faults. Isl Arc 6:244–260. doi: 10.1111/j.1440-1738.1997.tb00175.x CrossRefGoogle Scholar
  15. Heise W, Caldwell TG, Bibby HM, Bannister SC (2008) Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field. Taupo Volcanic Zone, New Zealand. Geophys J Int 173:740–750. doi: 10.1111/j.1365-246×.2008.03737.x CrossRefGoogle Scholar
  16. Jones KA, Ingham MR, Bibby HM (2008) The hydrothermal vent system of Mount Ruapehu, New Zealand—a high frequency MT survey of the summit plateau. J Volcanol Geotherm Res 176:591–600. doi: 10.1016/j.jvolgeores.2008.05.006 CrossRefGoogle Scholar
  17. Kanda W, Tanaka Y, Utsugi M, Takakura S, Hashimoto T, Inoue H (2008) A preparation zone for volcanic explosions beneath Naka-dake crater, Aso Volcano, as inferred from magnetotelluric surveys. J Volcanol Geotherm Res 178:32–45. doi: 10.1016/j.jvolgeores.2008.01.022 CrossRefGoogle Scholar
  18. Lee JO, Kang IM, Cho WJ (2010) Smectite alteration and its influence on the barrier properties of smectite clay for a repository. Appl Clay Sci 47:99–104. doi: 10.1016/j.clay.2008.10.007 CrossRefGoogle Scholar
  19. Lowry AR, Hamburger MW, Meertens CM, Ramos EG (2001) GPS monitoring of crustal deformation at Taal Volcano, Philippines. J Volcanol Geotherm Res 105:35–47. doi: 10.1016/S0377-0273(00)00238-9 CrossRefGoogle Scholar
  20. Maeda Y, Kumagai H, Lacson R, Figueroa MS II, Yamashina T (2013) Source process of long-period seismic events at Taal Volcano, Philippines: vapor transportation and condensation in a shallow hydrothermal fissure. J Geophys Res 118. doi: 10.1002/jgrb.50205
  21. Manzella A, Volpi G, Zaja A, Meju M (2004) Combined TEM–MT investigation of shallow-depth resistivity structure of Mt Somma–Vesuvius. J Volcanol Geotherm Res 131:19–32. doi: 10.1016/S0377-0273(03)00313-5 Google Scholar
  22. Mastushima N, Oshima H, Ogawa Y, Takakura S, Satoh H, Utsugi M, Nishida Y (2001) Magma prospecting in Usu Volcano, Hokkaido, Japan, using magnetotelluric soundings. J Volcanol Geotherm Res 109:263–277. doi: 10.1016/S0377-0273(00)00320-6 CrossRefGoogle Scholar
  23. Meju MA (2002) Geoelectromagnetic exploration for natural resources: models, case studies and challenges. Surv Geophys 23:133–205. doi: 10.1023/A:1015052419222 CrossRefGoogle Scholar
  24. Miklius A, Flower MFJ, Huijsmans JPP, Mukasa SB, Castillo P (1991) Geochemistry of lavas from Taal Volcano, southwestern Luzon, Philippines: evidence for multiple magma supply systems and mantle source heterogeneity. J Petrol 32:593–627. doi: 10.1093/petrology/32.3.593 CrossRefGoogle Scholar
  25. Monteiro Santos FA, Trota A, Soares A, Luzio R, Lourenco N, Matos L, Almedia E, Gaspar JL, Miranda JM (2006) An audio-magnetotelluric investigation in Terceira Island (Azores). J Appl Geophys 59:314–323. doi: 10.1016/j.jappgeo.2005.12.001 CrossRefGoogle Scholar
  26. Nam MJ, Kim HJ, Song Y, Lee TJ, Su JH (2009) Three-dimensional topographic and bathymetric effects on magnetotelluric responses in Jeju Island, Korea. Geophys J Int 176:457–466. doi: 10.1111/j.1365-246×.2008.03993.x CrossRefGoogle Scholar
  27. Nishigami K, Shibutani T, Ohkura T, Hirata M, Horikawa H, Shimizu K, Matsuo S, Nakao S, Ando M, Bautista BC, Bautista LP, Barcelona ES, Valerio R, Lanuza AG, Chu AV, Villegas JJ, Rasdas AR, Mangao EA, Gabinete E, Punongbayan BJ, Punongbayan RS (1994) Shallow crustal structure beneath Taal Volcano, Philippines, revealed by the 1993 seismic explosion survey. Bull Disaster Prev Res Inst, Kyoto Univ 44:123–138Google Scholar
  28. Nurhasan OY, Ujihara N, Tank SB, Honkura Y, Onizawa S, Mori T, Makino M (2006) Two electrical conductors beneath Kusatsu-Shirane Volcano, Japan, imaged by audiomagnetotellurics, and their implications for the hydrothermal system. Earth Planets Space 58:1053–1059Google Scholar
  29. Ogawa Y, Uchida T (1996) A two-dimensional magnetotelluric inversion assuming Gaussian static shift. Geophys J Int 126:69–76. doi: 10.1111/j.1365-246×.1996.tb05267.x CrossRefGoogle Scholar
  30. Oskooi B, Pedersen LB, Smirnov M, Árnason K, Eysteinsson H, Manzella A (2005) The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland. Phys Earth Planet Inter 150:183–195. doi: 10.1016/j.pepi.2004.08.027 CrossRefGoogle Scholar
  31. Papa RDS, Mamaril AC Sr (2011) History of the biodiversity and limno-ecological studies on Lake Taal with notes on the current state of Philippine limnology. Philipp Sci Lett 4:1–10Google Scholar
  32. Partzsch GM, Schilling FR, Arndt J (2000) The influence of partial melting on the electrical behavior of crustal rocks: laboratory examinations, model calculations and geological interpretations. Tectonophysics 317:189–203. doi: 10.1016/S0040-1951(99)00320-0 CrossRefGoogle Scholar
  33. Pous J, Heise W, Schnegg PA, Muñoz G, Martí J, Soriano C (2002) Magnetotelluric study of the Las Cañadas caldera (Tenerife, Canary Islands): structural and hydrogeological implications. Earth Planet Sci Lett 204:249–263. doi: 10.1016/S0012-821×(02)00956-1 CrossRefGoogle Scholar
  34. Spichak V, Manzella A (2009) Electromagnetic sounding of geothermal zones. Jour Appl Geophys 68:459–478. doi: 10.1016/j.jappgeo.2008.05.007 CrossRefGoogle Scholar
  35. Takakura S (1995) Resistivity of Neogene rocks in the Niigata and the Akita oil fields, Japan. Butsuri-Tansa (Geophys Explor) 48:161–175 (in Japanese with English abstract and figure captions)Google Scholar
  36. Torres RC, Self S, Punongbayan RS (1995) Attention focuses on Taal: decade volcano of the Philippines. EOS Trans Am Geophys Un 76:241–247CrossRefGoogle Scholar
  37. Wersin P, Johnson LH, McKinley IG (2007) Performance of the bentonite barrier at temperatures beyond 100°C: a critical review. Phys Chem Earth 32:780–788. doi: 10.1016/j.pce.2006.02.051 CrossRefGoogle Scholar
  38. Wessel P, Smith WHF (1998) New and improved version of Generic Mapping Tools released. EOS Trans Am Geophys Un 79:579CrossRefGoogle Scholar
  39. Wolfe JA (1980) Eruptions of Taal Volcano 1976–1977. EOS 61:57–58CrossRefGoogle Scholar
  40. Yamaya Y (2008) Three dimensional resistivity structure of Tarumai Volcano by the magnetotelluric method including the effects of regional structure. PhD thesis, Hokkaido University, Japan, 102 ppGoogle Scholar
  41. Yamaya Y, Mogi T, Hashimoto T, Ichihara H (2009) Hydrothermal system beneath the crater of Tarumai Volcano, Japan: 3-D resistivity structure revealed using audio-magnetotellurics and induction vector. J Volcanol Geotherm Res 187:193–202. doi: 10.1016/j.jvolgeores.2009.09.008 CrossRefGoogle Scholar
  42. You SH, Gung Y, Lin CH, Konstantinou KI, Chang TM, Chang ETY, Solidum R (2013) A preliminary seismic study of Taal Volcano, Luzon Island Philippines. J Asian Earth Sci 65:100–106. doi: 10.1016/j.jseaes.2012.10.027 Google Scholar
  43. Zlotnicki J, Sasai Y, Toutain JP, Villacorte EU, Bernard A, Sabit JP, Gordon JM Jr, Corpuz EG, Harada M, Punongbayan JT, Hase H, Nagao T (2009a) Combined electromagnetic, geochemical and thermal surveys of Taal Volcano (Philippines) during the period 2005–2006. Bull Volcanol 71:29–47. doi: 10.1007/s00445-008-0205-2 CrossRefGoogle Scholar
  44. Zlotnicki J, Sasai Y, Toutain JP, Villacorte E, PHIVOLCS Team, Yvetot P, Fauquet F, Bernard A (2009b) Electromagnetic and geochemical methods applied to investigations of hydrothermal/volcanic unrests: examples of Taal (Philippines) and Miyake-jima (Japan) volcanoes. Phys Chem Earth 34:394–408. doi: 10.1016/j.pce.2008.09.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Y. Yamaya
    • 1
    • 2
    Email author
  • P. K. B. Alanis
    • 3
    • 5
  • A. Takeuchi
    • 3
  • J. M. CordonJr.
    • 5
  • T. Mogi
    • 4
  • T. Hashimoto
    • 4
  • Y. Sasai
    • 3
  • T. Nagao
    • 3
  1. 1.Geological Survey of JapanNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Earthquake Research InstituteThe University of TokyoBunkyo-kuJapan
  3. 3.Earthquake Prediction Research CenterTokai UniversityShimizu-kuJapan
  4. 4.Institute of Seismology and Volcanology, Faculty of ScienceHokkaido UniversitySapporoJapan
  5. 5.Philippine Institute of Volcanology and SeismologyQuezon CityPhilippines

Personalised recommendations