Skip to main content
Log in

Three-dimensional electrical resistivity structure beneath the Cuonadong dome in the Northern Himalayas revealed by magnetotelluric data and its implication

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The North Himalayan gneiss domes (NHGD), as one of the extensional structures widely distributed across the southern Tibetan Plateau, are an important window for studying post-collisional diastrophism and magmation as well as polymetallic mineralization. However, the deep mechanism for the formation of NHGD remains controversial. The magneto-telluric (MT) method was adopted to study the deep structure of the Cuonadong dome in the Northern Himalayas. The characteristics of the dome were explored by using the MT sounding curves and phase tensors. Three-dimensional (3D) MT inversion was performed to determine the electrical resistivity structure beneath the Cuonadong dome. The preferred 3D electrical resistivity model shows that an obvious low-resistivity anomaly develops beneath the Cuonadong dome which is overlaid by a high-resistivity body and surrounded by an apparent subcircular zone of low-resistivity anomalies. The integrated conductivity (longitudinal conductance) from depths of 1–20 km indicates that the average longitudinal conductance at the core of the Cuonadong dome is about 10,000 S. The high-conductivity anomaly at the core is found to be analogous to that of lava, mainly resulting from the crustal partial melting, and the estimated melt content is 11.0–17.3%. The high conductance surrounding the dome reaches 20,000 S on average, which is mainly attributed to saline fluids. MT results in this study support that the Cuonadong dome experienced magmatic diapirism. Taken together with previous geological and geochemical studies, we suggest that under the east-west (E-W) extensional tectonic setting in southern Tibet, deep crustal partial melting constantly accumulated beneath the dome, and therefore the magmatic diapirism resulted in the formation of the Cuonadong dome. In addition, the MT results also indicate that the development of the Cuonadong dome provides abundant mineralizing fluids and the space for migration of metallogenic fluids for (rare-metal) polymetallic mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armijo R, Tapponnier P, Mercier J L, Han T L. 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications. J Geophys Res, 91: 13803–13872

    Article  Google Scholar 

  • Bai D, Unsworth M J, Meju M A, Ma X B, Teng J W, Kong X R, Sun Y, Sun J, Wang L F, Jiang C S, Zhao C P, Xiao P F, Liu M. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging. Nat Geosci, 3: 358–362

    Article  Google Scholar 

  • Bao X W, Sun X X, Xu M J, Eaton D W, Song X D, Wang L S, Ding Z F, Mi N, Li H, Yu D Y, Huang Z C, Wang P. 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth Planet Sci Lett, 415: 16–24

    Article  Google Scholar 

  • Beaumont C, Jamieson R A, Nguyen M H, Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414: 738–742

    Article  Google Scholar 

  • Beaumont C, Jamieson R A, Nguyen M H, Medvedev S. 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J Geophys Res-Solid Earth, 109: B06406

    Article  Google Scholar 

  • Bibby H M, Caldwell T G, Brown C. 2005. Determinable and non-determinable parameters of galvanic distortion in magnetotellurics. Geophys J Int, 163: 915–930

    Article  Google Scholar 

  • Booker J R. 2014. The magnetotelluric phase tensor: A critical review. Surv Geophys, 35: 7–40

    Article  Google Scholar 

  • Burchfiel B C, Royden L H. 1985. North-south extension within the convergent Himalayan region. Geology, 13: 679–682

    Article  Google Scholar 

  • Burg J P, Brunel M, Gapais D, Chen G M, Liu G H. 1984. Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China). J Struct Geol, 6: 535–542

    Article  Google Scholar 

  • Cai J C, Wei W, Hu X Y, Wood D A. 2017. Electrical conductivity models in saturated porous media: A review. Earth-Sci Rev, 171: 419–433

    Article  Google Scholar 

  • Caldwell T G, Bibby H M, Brown C. 2004. The magnetotelluric phase tensor. Geophys J Int, 158: 457–469

    Article  Google Scholar 

  • Chen J Y, Gaillard F, Villaros A, Yang X S, Laumonier M, Jolivet L, Unsworth M, Hashim L, Scaillet B, Richard G. 2018. Melting conditions in the modern Tibetan crust since the Miocene. Nat Commun, 9: 3515

    Article  Google Scholar 

  • Chen X B, Ye T, Cai J T, Wang L F. 2019. Refined techniques for data processing and two-dimensional inversion in magnetotelluric (VII): Structure and seismogenic environment of Yingjiang-Longling seismic area (in Chinese). Chin J Geophys, 62: 1377–1393

    Google Scholar 

  • Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28: 703–706

    Article  Google Scholar 

  • Comeau M J, Unsworth M J, Ticona F, Sunagua M. 2015. Magnetotelluric images of magma distribution beneath Volcán Uturuncu, Bolivia: Implications for magma dynamics. Geology, 43: 243–246

    Article  Google Scholar 

  • Dong H, Wei W B, Jin S, Ye G F, Zhang L T, Jing J E, Yin Y T, Xie C L, Jones A G. 2016. Extensional extrusion: Insights into south-eastward expansion of Tibetan Plateau from Magnetotelluric array data. Earth Planet Sci Lett, 454: 78–85

    Article  Google Scholar 

  • Dong H, Wei W B, Jin S, Ye G F, Jones A G, Zhang L T, Jing J E, Xie C L, Yin Y T. 2020. Shaping the surface deformation of central and south Tibetan Plateau: Insights from magnetotelluric array data. J Geophys Res-Solid Earth, 125: e19206

    Article  Google Scholar 

  • Dong L, Li G M, Wang Y, Xiang A P, Cao H W, Huang B. 2020. Geochronology, geochemistry and their geological significances of hornblende schists from the Yardoi dome, Southern Tibet, China (in Chinese). Acta Mineral Sin, 40: 556–568

    Google Scholar 

  • Dong X, Li W H, Lu Z W, Huang X F, Gao R. 2020. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone. Tectonophysics, 780: 228395

    Article  Google Scholar 

  • Egbert G D. 1997. Robust multiple-station magnetotelluric data processing. Geophys J Int, 130: 475–496

    Article  Google Scholar 

  • Egbert G D, Kelbert A. 2012. Computational recipes for electromagnetic inverse problems. Geophys J Int, 189: 251–267

    Article  Google Scholar 

  • Fu J G, Li G M, Wang G H, Huang Y, Zhang L K, Dong S L, Liang W. 2017. First field identification of the Cuonadong dome in southern Tibet: Implications for EW extension of the North Himalayan gneiss dome. Int J Earth Sci-Geol Rundsch, 106: 1581–1596

    Article  Google Scholar 

  • Fu J G, Li G M, Wang G H, Zhang L K, Liang W, Zhang Z, Zhang X Q, Huang Y. 2018. Synchronous granite intrusion and E-W extension in the Cuonadong dome, southern Tibet, China: Evidence from field observations and thermochronologic results. Int J Earth Sci-Geol Rundsch, 107: 2023–2041

    Article  Google Scholar 

  • Gao J, Zhang H J, Zhang S Q, Xin H L, Li Z W, Tian W, Bao F, Cheng Z P, Jia X F, Fu L. 2020. Magma recharging beneath the Weishan volcano of the intraplate Wudalianchi volcanic field, northeast China, implied from 3-D magnetotelluric imaging. Geology, 48: 913–918

    Article  Google Scholar 

  • Gao L E, Gao J H, Zhao L H, Hou K J, Tang S H. 2017. The Miocene leucogranite in the Nariyongcuo Gneiss Dome, southern Tibet: Products from melting metapelite and fractional crystallization (in Chinese). Acta Petrol Sin, 33: 2395–2411

    Google Scholar 

  • Gao R, Lu Z W, Klemperer S L, Wang H Y, Dong S W, Li W H, Li H Q. 2016. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nat Geosci, 9: 555–560

    Article  Google Scholar 

  • Guo L, Zhang J, Zhang B. 2008. Structures, kinematics, thermochronology and tectonic evolution of the Ramba gneiss dome in the northern Himalaya. Prog Nat Sci, 18: 851–860

    Article  Google Scholar 

  • Ha G H, Wu Z H, He L. 2018. Late Cenozoic sedimentary strata of Qiongduojiang Graben, south Tibet: Preliminary constraint on the initial rifting age of the S-N trending rift (in Chinese). Acta Geol Sin, 92: 2051–2067

    Google Scholar 

  • Harris N, Massey J. 1994. Decompression and anatexis of Himalayan metapelites. Tectonics, 13: 1537–1546

    Article  Google Scholar 

  • Harrison T M, Lovera O M, Grove M. 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology, 25: 899–902

    Article  Google Scholar 

  • Hashim L, Gaillard F, Champallier R, Le Breton N, Arbaret L, Scaillet B. 2013. Experimental assessment of the relationships between electrical resistivity, crustal melting and strain localization beneath the Himalayan-Tibetan Belt. Earth Planet Sci Lett, 373: 20–30

    Article  Google Scholar 

  • Heise W, Pous J. 2003. Anomalous phases exceeding 90° in magneto-tellurics: Anisotropic model studies and a field example. Geophys J Int, 155: 308–318

    Article  Google Scholar 

  • Hill G J, Bibby H M, Ogawa Y, Wallin E L, Bennie S L, Caldwell T G, Keys H, Bertrand E A, Heise W. 2015. Structure of the Tongariro Volcanic system: Insights from magnetotelluric imaging. Earth Planet Sci Lett, 432: 115–125

    Article  Google Scholar 

  • Hill G J, Caldwell T G, Heise W, Chertkoff D G, Bibby H M, Burgess M K, Cull J P, Cas R A F. 2009. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nat Geosci, 2: 785–789

    Article  Google Scholar 

  • Hou Z Q. 2010. Metallogensis of Continental Collision (in Chinese). Acta Geol Sin, 84: 30–58

    Google Scholar 

  • Hou Z Q, Cook N J. 2009. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geol Rev, 36: 2–24

    Article  Google Scholar 

  • Hou Z Q, Qu X M, Yang Z S, Meng X J, Li Z Q, Yang Z M, Zheng M P, Zheng Y Y, Nie F J, Gao Y F, Jiang S H, Li G M. 2006. Metallogenesis in Tibetan collisional orogenic belt: III, Mineralization in post-collisional extension setting (in Chinese). Mineral Deposit, 25: 629–651

    Google Scholar 

  • Hou Z Q, Zheng Y C, Zeng L S, Gao L E, Huang K X, Li W, Li Q Y, Fu Q, Liang W, Sun Q Z. 2012. Eocene-Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth Planet Sci Lett, 349–350: 38–52

    Article  Google Scholar 

  • Hu X Y, Lin W L, Yang W C, Yang B. 2020. A review on developments in the electrical structure of craton lithosphere. Sci China Earth Sci, 63: 1661–1677

    Article  Google Scholar 

  • Jiao Y J, Huang X R, Li G M, Liang S X, Guo J. 2019. Deep structure and mineralization of Zhaxikang ore-concentration Area, South Tibet: Evidence from geophysics (in Chinese). Earth Sci, 44: 2117–2128

    Google Scholar 

  • Jin S, Wei W B, Wang S, Ye G F, Deng M, Tan H D. 2010. Distribution of the formation and dynamic signification of the high conductive layer in Tibetan crust (in Chinese). Chin J Geophys, 53: 2376–2385

    Google Scholar 

  • Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard S M F, Upreti B N, Vidal P. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134: 39–57

    Article  Google Scholar 

  • Lee J, Hacker B R, Dinklage W S, Wang Y, Gans P, Calvert A, Wan J L, Chen W, Blythe A E, McClelland W. 2000. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics, 19: 872–895

    Article  Google Scholar 

  • Lee J, McClelland W, Wang Y, Blythe A, McWilliams M. 2006. Oligocene-Miocene middle crustal flow in southern Tibet: Geochronology of Mabja Dome. Geol Soc London Spec Publ, 268: 445–469

    Article  Google Scholar 

  • Li D W, Liu D M, Liao Q A, Zhang X H, Yuan Y M. 2003. Definition and significance of the Lhagoi Kangri metamorphic core complexes in Sagya, southern Tibet (in Chinese). Geol Bull China, 22: 303–307

    Google Scholar 

  • Li G M, Zhang L K, Jiao Y J, Xia X B, Dong S L, Fu J G, Liang W, Zhang Z, Wu J Y, Dong L, Huang Y. 2017. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet (in Chinese). Mineral Deposit, 36: 1003–1008

    Google Scholar 

  • Li H L, Li G M, Li Y X, Dong S L, Qing C S, Fu J G, Liu H, Huang H X. 2017. A study on ore geological characteristics and fluid inclusions of Jienagepu gold deposit in Zhaxikang ore concentration district, Southern Tibet, China (in Chinese). Acta Mineral Sin, 37: 684–696

    Google Scholar 

  • Li H Q, Gao R, Li W H, Carbonell R, Yelisetti S, Huang X F, Shi Z X, Lu Z W. 2021. The Mabja dome structure in southern Tibet revealed by deep seismic reflection data and its tectonic implications. J Geophys Res-Solid Earth, 126: e20265

    Article  Google Scholar 

  • Li S, Weng A, Li J, Shan X, Han J, Tang Y, Zhang Y, Wang X. 2020. Deep origin of Cenozoic volcanoes in Northeast China revealed by 3-D electrical structure. Sci China Earth Sci, 63: 533–547

    Article  Google Scholar 

  • Liang H D, Jin S, Wei W B, Gao R, Ye G F, Zhang L T, Yin Y T, Lu Z W. 2018. Lithospheric electrical structure of the middle Lhasa terrane in the south Tibetan Plateau. Tectonophysics, 731–732: 95–103

    Article  Google Scholar 

  • Liang W. 2019. Characteristics of ore-forming fluids in Himalayan Au−Sb−Pb−Zn polymetallic belt: Constraints from H-O isotopes (in Chinese). Earth Sci, 44: 2308–2318

    Google Scholar 

  • Liang W, Li G M, Zhang L K, Fu J G, Huang Y, Zhang Z. 2020. Cuonadong Be-rare polymetallic metal deposit: Constraints from Ar-Ar age of hydrothermal muscovite (in Chinese). Sediment Geol Tethyan Geol, 40: 76–81

    Google Scholar 

  • Lin B, Tang J X, Zheng W B, Leng Q F, Lin X, Wang Y Y, Meng Z, Tang P, Ding S, Xu Y F, Yuan M. 2016. Geochemical characteristics, age and genesis of Cuonadong leucogranite, Tibet (in Chinese). Acta Petrol ET Mineral, 35: 391–406

    Google Scholar 

  • Lou Y L, Chen W, Yuan Y S, Yang T. 2018. Fluid inclusion and H, O, and S isotopic composition of Qiaga stibnite deposit in Longzi County, Tibet (in Chinese). Mineral Deposit, 37: 1124–1140

    Google Scholar 

  • Meqbel N M, Egbert G D, Wannamaker P E, Kelbert A, Schultz A. 2014. Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data. Earth Planet Sci Lett, 402: 290–304

    Article  Google Scholar 

  • Meqbel N M, Weckmann U, Muñoz G, Ritter O. 2016. Crustal metamorphic fluid flux beneath the Dead Sea Basin: Constraints from 2-D and 3-D magnetotelluric modelling. Geophys J Int, 207: 1609–1629

    Article  Google Scholar 

  • Nábělek J, Hetényi G, Vergne J, Sapkota S, Kafle B, Jiang M, Su H, Chen J, Huang B S, the Hi-Climb Team. 2009. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325: 1371–1374

    Article  Google Scholar 

  • Ni H W, Keppler H, Behrens H. 2011. Electrical conductivity of hydrous basaltic melts: Implications for partial melting in the upper mantle. Contrib Mineral Petrol, 162: 637–650

    Article  Google Scholar 

  • Nie F J, Hu P, Jiang S H, Li Z Q, Liu Y, Zhou Y Z. 2005. Type and temporal-spatial distribution of gold and antimony deposits (prospects) in Southern Tibet, China (in Chinese). Acta Geol Sin, 79: 373–385

    Google Scholar 

  • Ogawa Y, Ichiki M, Kanda W, Mishina M, Asamori K. 2014. Three-dimensional magnetotelluric imaging of crustal fluids and seismicity around Naruko volcano, NE Japan. Earth Planet Sp, 66: 158

    Article  Google Scholar 

  • Pang Y J, Zhang H, Gerya T V, Liao J, Cheng H H, Shi Y L. 2018. The mechanism and dynamics of N-S rifting in southern Tibet: Insight from 3-D thermomechanical modeling. J Geophys Res-Solid Earth, 123: 859–877

    Article  Google Scholar 

  • Spratt J E, Jones A G, Nelson K D, Unsworth M J. 2005. Crustal structure of the India-Asia collision zone, southern Tibet, from INDEPTH MT investigations. Phys Earth Planet Inter, 150: 227–237

    Article  Google Scholar 

  • Sun X Y, Zhan Y, Unsworth M M, Egbert G, Zhang H P, Chen X B, Zhao G Z, Sun J B, Zhao L Q, Cui T F, Liu Z Y, Han J. 2020. 3-D magnetotelluric imaging of the easternmost Kunlun Fault: Insights into strain partitioning and the seismotectonics of the Jiuzhaigou Ms7.0 earthquake. J Geophys Res-Solid Earth, 125: e19731

    Article  Google Scholar 

  • Tapponnier P, Xu Z, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294: 1671–1677

    Article  Google Scholar 

  • Ten Grotenhuis S M, Drury M R, Spiers C J, Peach C J. 2005. Melt distribution in olivine rocks based on electrical conductivity measurements. J Geophys Res, 110: B12201

    Article  Google Scholar 

  • Unsworth M J, Wei W B, Jones A G, Li S H, Bedrosian P, Booker J, Sheng J, Ming D, Tan H D. 2004. Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data. J Geophys Res, 109: B02403

    Google Scholar 

  • Unsworth M J, Jones A G, Wei W B, Marquis G, Gokarn S G, Spratt J E, The INDEPTH-MT Team. 2005. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature, 438: 78–81

    Article  Google Scholar 

  • Wang R C, Wu F Y, Xie L, Liu X C, Wang J M, Yang L, Lai W, Liu C. 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Sci China Earth Sci, 60: 1655–1663

    Article  Google Scholar 

  • Wang X B, Zhang G, Zhou J, Li D W, Luo W, Hu Y B, Cai X L, Guo Z M. 2018. Crust and upper mantle electrical resistivity structure in the Longmenshan tectonic belt and its relationship with Wenchuan and Lushan earthquakes (in Chinese). Chin J Geophys, 61: 1984–1995

    Google Scholar 

  • Wang X X, Zhang J J, Yan S Y, Liu J. 2016. Age and geochemistry of the Cuona leucogranite in southern Tibet and its geological implications (in Chinese). Geol Bull China, 35: 91–103

    Google Scholar 

  • Wu F Y, Liu Z C, Liu X C, Ji W Q. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift (in Chinese). Acta Petrol Sin, 31: 1–36

    Google Scholar 

  • Wu F Y, Liu X C, Liu Z C, Wang R C, Xie L, Wang J M, Ji W Q, Yang L, Liu C, Khanal G P, He S X. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352–353: 105319

    Article  Google Scholar 

  • Wu Z H, Zhang Y S, Hu D G, Zhao X T, Ye P S. 2007. Late Cenozoic normal faulting of the Qungdo’gyang graben in the central segment of the Cona-Oiga rift, southeastern Tibet (in Chinese). J Geomech, 13: 297–306

    Google Scholar 

  • Xia X B, Li G M, Cao H W, Liang W, Fu J G. 2019. Petrogenic age and geochemical characteristics of the mother rock of skarn type ore body in the Cuonadong Be-W-Sn polymetallic deposit, Southern Tibet (in Chinese). Earth Sci, 44: 2207–2223

    Google Scholar 

  • Xiao Q B, Zhang J, Zhao G Z, Wang J J. 2013. Electrical resistivity structures northeast of the Eastern Kunlun Fault in the Northeastern Tibet: Tectonic implications. Tectonophysics, 601: 125–138

    Article  Google Scholar 

  • Xie C L, Jin S, Wei W B, Ye G F, Zhang L T, Dong H, Yin Y T. 2017. Varying Indian crustal front in the southern Tibetan Plateau as revealed by magnetotelluric data. Earth Planets Space, 69: 147

    Article  Google Scholar 

  • Xie Y L, Li L M, Wang B G, Li G M, Liu H F, Li Y X, Dong S L, Zhou J J. 2017. Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet, China: Evidence for a magmatic link. Ore Geol Rev, 80: 891–909

    Article  Google Scholar 

  • Xu Y, Yang X, Zheng J, Xia Q. 2019. The origins and geodynamic implications of mid-lithospheric discontinuities (in Chinese). Chin Sci Bull, 64: 2305–2315

    Article  Google Scholar 

  • Xu Z Q, Yang J S, Qi X X, Cui J W, Li H B, Chen F Y. 2006. India-Asia collision: A further discussion of N-S and E-W trending detachments and the orogenic mechanism of the modern Himalayas (in Chinese). Geol Bull China, 25: 1–14

    Google Scholar 

  • Xue S, Bai D, Chen Y, Ma X, Chen L, Li X, Yan Y. 2019. Contrasting crustal deformation mechanisms in the Longmenshan and West Qinling orogenic belts, NE Tibet, revealed by magnetotelluric data. J Asian Earth Sci, 176: 120–128

    Article  Google Scholar 

  • Xue S, Chen Y, Liang H D, Li X, Liang X F, Ma X B, Lu Z W, Bai D H, Yan Y L. 2021. Deep electrical resistivity structure across the Gyaring Co Fault in Central Tibet revealed by magnetotelluric data and its implication. Tectonophysics, 809: 228835

    Article  Google Scholar 

  • Yang Z S, Hou Z Q, Gao W, Wang H P, Li Z Q, Meng X J, Qu X M. 2006. Metallogenic characteristics and genetic model of antimony and gold deposits in south Tibetan detachment system (in Chinese). Acta Geol Sin, 80: 1377–1391

    Google Scholar 

  • Ye T, Huang Q H, Chen X B, Zhang H Q, Chen Y J, Zhao L, Zhang Y. 2018. Magma chamber and crustal channel flow structures in the Tengchong volcano area from 3-D MT inversion at the intracontinental block boundary southeast of the Tibetan Plateau. J Geophys Res-Solid Earth, 123: 11112–11126

    Article  Google Scholar 

  • Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev, 76: 1–131

    Article  Google Scholar 

  • Yin C C, Liu Y H, Xiong B. 2020. Status and prospect of 3D inversions in EM geophysics. Sci China Earth Sci, 63: 452–455

    Article  Google Scholar 

  • Yu N, Unsworth M, Wang X B, Li D W, Wang E C, Li R H, Hu Y B, Cai X L. 2020. New insights into crustal and mantle flow beneath the Red River Fault zone and adjacent areas on the southern margin of the Tibetan Plateau revealed by a 3-D magnetotelluric study. J Geophys Res-Solid Earth, 125: e19396

    Article  Google Scholar 

  • Zeng L S, Gao L E, Xie K J, Liu-Zeng J. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth Planet Sci Lett, 303: 251–266

    Article  Google Scholar 

  • Zeng L S, Liu J, Gao L, Xie K J, Wen L. 2009. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications (in Chinese). Chin Sci Bull, 54: 104–112

    Article  Google Scholar 

  • Zhang B, Zhang J J, Guo L, Wang W L. 2005. Structural characteristics and deformation analysis of mylonite belt in the detachment fault system of Yalashabpo metamorphic core complex in the bending-uplift belt of the Northern Himalayas (in Chinese). Progr Nat Sci, 15: 692–699

    Google Scholar 

  • Zhang H Q, Huang Q H, Zhao G Z, Guo Z, Chen Y S. 2016. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: Evidence for a mantle source of Datong volcanoes. Earth Planet Sci Lett, 453: 182–192

    Article  Google Scholar 

  • Zhang J J. 2007. A review on the extensional structures in the northern Himalaya and southern Tibet (in Chinese). Geol Bull China, 26: 639–649

    Google Scholar 

  • Zhang J J, Guo L. 2007. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system. J Asian Earth Sci, 29: 722–736

    Article  Google Scholar 

  • Zhang J J, Santosh M, Wang X X, Guo L, Yang X Y, Zhang B. 2012. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Res, 21: 939–960

    Article  Google Scholar 

  • Zhang L K, Zhang Z, Li G M, Dong S L, Xia X B, Liang W, Fu J G, Cao H W. 2018. Rock assemblage, structural characteristics and genesis mechanism of the Cuonadong Dome, Tethys Himalaya (in Chinese). Earth Sci, 43: 2664–2683

    Google Scholar 

  • Zhang Z, Zhang L K, Li G M, Liang W, Xia X B, Fu J G, Dong S L, Ma G T. 2017. The Cuonadong Gneiss Dome of North Himalaya: A new member of gneiss dome and a new proposition for the ore-controlling role of North Himalaya gneiss domes (in Chinese). Acta Geosci Sin, 38: 754–766

    Google Scholar 

  • Zhao G Z, Unsworth M J, Zhan Y, Wang L F, Chen X B, Jones A G, Tang J, Xiao Q B, Wang J J, Cai J T, Li T, Wang Y Z, Zhang J H. 2012. Crustal structure and rheology of the Longmenshan and Wenchuan Mw7.9 earthquake epicentral area from magnetotelluric data. Geology, 40: 1139–1142

    Article  Google Scholar 

Download references

Acknowledgements

The in-situ data were collected with assistance of Haoping HONG, Jiawei WU, and Zhehan LIU from China University of Geosciences (Beijing). Sincere thanks are given to the two anonymous reviewers for their constructive comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 91962109, 42174094), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0701), the Fund of Chinese Geological Survey (Grant No. DD20190016), and the Basic Scientific Research Fund of the Institute of Geology, Chinese Academy of Geological Sciences (Grant No. J2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanwu Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, S., Lu, Z., Li, W. et al. Three-dimensional electrical resistivity structure beneath the Cuonadong dome in the Northern Himalayas revealed by magnetotelluric data and its implication. Sci. China Earth Sci. 65, 1538–1553 (2022). https://doi.org/10.1007/s11430-021-9900-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9900-y

Keywords

Navigation