Skip to main content
Log in

Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Taal volcano (311 m in altitude) is located in The Philippines (14°N, 121°E) and since 1572 has erupted 33 times, causing more than 2,000 casualties during the most violent eruptions. In March 2010, the shallow structures in areas where present-day surface activity takes place were investigated by DC resistivity surveys. Electrical resistivity tomography (ERT) lines were performed above the two identified hydrothermal areas located on the northern flank of the volcano and in the Main Crater, respectively. Due to rough topography, deep valleys, and dense vegetation, most measurements were collected using a remote method based on a laboratory-made equipment. This allowed retrieval of information down to a depth of 250 m. ERTs results detail the outlines of the two geothermal fields defined by previous self-potential, CO2 soil degassing, ground temperature, and magnetic mapping (Harada et al. Japan Acad Sci 81:261–266, 2005; Zlotnicki et al. Bull Volcanol 71:29–49, 2009a, Phys Chem Earth 34:294–408, 2009b). Hydrothermal fluids originate mainly from inside the northern part of the Main Crater at a depth greater than the bottom of the Crater Lake, and flow upward to the ground surface. Furthermore, water from the Main Crater Lake infiltrates inside the surrounding geological formations. The hydrothermal fluids, outlined by gas releases and high temperatures, cross the crater rim and interact with the northern geothermal field located outside the Main Crater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aizawa K, Yoshimura R, Oshimana N, Yamazakia K, Utoa T, Ogawa Y, Tank SB, Kanda W, Sakanaka S, Furukawa Y, Hashimotoe T, Uyeshima M, Ogawa T, Shiozaki I, Hurst AW (2005) Hydrothermal system beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-potential. Earth Planet Sci Lett 235(1-2):343–355

    Article  Google Scholar 

  • Anderson LA, Johnson RG (1976) Application of the self-potential method to geothermal exploration in Long Valley, California. J Geophys Res 81:1527–1532

    Article  Google Scholar 

  • Athanasiou EN, Tsourlos PI, Vargemezis GN, Papazachos CB, Tsokas GN (2007) Non-destructive DC resistivity surveying using flat-base electrodes. Near Surf Geophys 5:273–282

    Google Scholar 

  • Aubert M, Baudron JC (1998) Identification of a hidden thermal fissure in a volcanic terrain using a combination of hydrothermal convection indicators and soil–atmosphere analysis. J Volcanol Geotherm Res 35:217–225

    Article  Google Scholar 

  • Bartel BA, Hamburger MW, Meertens CM, Lowry AR, Corpuz E (2003) Dynamics of magmatic and hydrothermal systems at Taal volcano, Philippines, from continuous GPS measurements. J Geophys Res 108:2475. doi:10.1029/2002JB002194

    Article  Google Scholar 

  • Castany G (1968) Prospection et exploitation des eaux souterraines. Dunod 717

  • Colella A, Lapenna V, Rizzon E (2004) High-resolution imaging of the High Agri Valley basin (Southern Italy) with electrical resistivity tomography. Tectonophysics 386:29–40

    Article  Google Scholar 

  • Dahlin T, Zhou B (2002) Gradient and mid-point-referred measurements for multi-channel 2D resistivity imaging. In: Proceedings of 8th Meeting on Environmental and Engineering Geophysics, Aveiro, Portugal, 8–12 September 2002:157–160

  • Delmelle P, Kusakabe M, Bernard A, Fischer T, De Brouwer S, Del Mundo E (1998) Geochemical and isotopic evidence for seawater contamination of the hydrothermal system of Taal volcano, Luzon, the Philippines. Bull Volcanol 59:562–576

    Article  Google Scholar 

  • Fikos I (2010) Inversion of geoelectrical tomography data: application in Anthemountas river basin. PhD thesis. Aristotle University of Thessaloniki, Greece (in Greek)

  • Finizola A, Sortino F, Lénat JF, Valenza M (2002) Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveys. J Volcanol Geoth Res 116(1-2):1–18. doi:10.1016/S0377-0273(01)00327-4

    Article  Google Scholar 

  • Fournier N, Moreau M, Robertson R (2011) Disappearance of a crater lake: implications for potential explosivity at Soufriere volcano, St Vincent, Lesser Antilles. Bull Volcanol 73:543–555. doi:10.1007/s00445-010-0422-3

    Article  Google Scholar 

  • Harada M, Sabit JP, Sasai Y, Alanis PKB, Cordon JM Jr, Corpuz E, Zlotnicki J, Nagao T, Punongbayan JT (2005) Magnetic and electric field monitoring of Taal Volcano, Philippines. Part I: magnetic measurements. Japan Acad Sci 81(B):261–266

    Google Scholar 

  • Hashimoto T, Tanaka Y (1995) A large self-potential anomaly on Unzen Volcano, Shimabara peninsula, Kyushu Island, Japan. Geophys Res Lett 22:191–194

    Article  Google Scholar 

  • Jones KA, Ingham MR, Bibby HM (2008) The hydrothermal vent system of Mount Ruapehu, New Zealand—a high frequency MT survey of the summit plateau. J Volcanol Geotherm Res 176(4):591–600

    Article  Google Scholar 

  • Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon, New York

    Google Scholar 

  • La Brecque DJ, Ramirez AL, Daily WD, Binley AM, Schima SA (1996) ERT monitoring of environmental remediation processes. Meas Sci Technol 7(3):375–383

    Article  Google Scholar 

  • Legault MJ, Carriere D, Petrie L (2008) Synthetic model testing and distributed acquisition dc resistivity results over an unconformity uranium target from the Athabasca Basin, Northern Saskatchewan. Lead Edge 27:46–51

    Article  Google Scholar 

  • Legaz A, Vandemeulebrouck J, Revil A, Kemna A, Hurst AW, Reeves R, Papasin R (2009) A case study of resistivity and self-potential signatures of hydrothermal instabilities, Inferno Crater Lake, Waimangu, New Zealand. Geophys Res Lett 36:L12306. doi:10.1029/2009GL037573

    Article  Google Scholar 

  • Li Y, Oldenburg DW (1992) Inversion of DC resistivity data using an approximate inverse mapping. Geophys J Int 116:527–537

    Article  Google Scholar 

  • Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60:1682–1690

    Google Scholar 

  • Mandel S, Shiftan Z (1981) Groundwater resources. Investigation and development. Academic, London, p 269

    Google Scholar 

  • Massenet F, Pham VN (1985) Mapping and surveillance of active fissure zones on a volcano by the self-potential method, Etna, Sicily. J Volcanol Geotherm Res 24:315–338. doi:10.1016/0377-0273(85)90075-7

    Article  Google Scholar 

  • Meglich TM, Williams MC, Hodges SM, DeMarco MJ (2003) Subsurface geophysical imaging of lava tubes, Lava Beds National Monument, CA. Geophysics 2003, December 2003, Orlando, FL. Report submitted to the Florida Department of Transportation seen online at http://www.dot.state.fl.us/statematerialsoffice/geotechnical/conference/materials/meglich-williams-hodges-demarco.pdf

  • Park SK, Van GP (1991) Inversion of pole–pole data for 3-D resistivity structure beneath arrays of electrodes. Geophysics 56:951–960

    Google Scholar 

  • Ramos EG (2001) Geomorphic features of Taal volcano. J Geol Soc Phil 56(3–4):105–124

    Google Scholar 

  • Ramos EG (2002) Origin and geologic features of Taal Lake, Philippines. Aquat Ecosys Health Manag 5(2):155–162. doi:10.1080/14634980290031794

    Article  Google Scholar 

  • Sasai Y, Zlotnicki J, Nishida Y, Yvetot P, Morat P, Murakami H, Tanaka Y, Ishikawa Y, Koyama S, Sekiguchi W (1997) Electromagnetic monitoring of Miyake-jima volcano, Izu-Bonin Arc, Japan: a preliminary report. J Geomag Geoelectr 49:1293–1316

    Article  Google Scholar 

  • Sasaki Y (1994) 3D inversion using the finite element method. Geophysics 59:1839–1848

    Google Scholar 

  • Shima H (1990) 2-D automatic resistivity inversion technique using alpha centers. Geophysics 55:682–694

    Google Scholar 

  • Tamburriello G, Balasco M, Rizzo E, Harabaglia P, Lapenna V, Siniscalchi A (2008) Deep electrical resistivity tomography and geothermal analysis of Bradano foredeep deposits in Venosa area (Southern Italy): preliminary results. Ann Geophys 51(1):203–211

    Google Scholar 

  • Touttain JP, Sortino F, Baubron JC, Richon P, Surono, Sumatri S, Nonell A (2009) Structure and CO2 budget of Merapi volcano during inter-eruptive periods. Bull Volcanol 71(7):815–826. doi:10.1007/s00445-009-0266-x

    Article  Google Scholar 

  • Tripp A, Hohmann G, Swift C (1984) Two-dimensional resistivity inversion. Geophysics 49:1708–1717

    Google Scholar 

  • Tsourlos PI (1995) Modeling, interpretation and inversion of multielectrode resistivity survey data. PhD thesis, Department of Electronics, University of York

  • Wardman JB, Wilson TM, Bodger PS, Cole JW and Johnston DM (2011) Investigating the electrical conductivity of volcanic ash and its effect on HV power systems. J Phys Chem Earth, doi:10.1016/j.pce.2011.09.003

  • Xia J, Ludvigson G, Miller RD, Mayer L, Haj A (2010) Delineation of a volcanic ash body using electrical resistivity profiling. J Geophys Eng 7:267–276. doi:10.1088/1742-2132/7/3/005

    Article  Google Scholar 

  • Yamaya Y, Mogi T, Hashimoto T, Ichihara H (2009) Hydrothermal system beneath the crater of Tarumai volcano, Japan: 3-D resistivity structure revealed using audio-magnetotellurics and induction vector. J Volcanol Geotherm Res 187(3–4):193–202

    Article  Google Scholar 

  • Yi MJ, Kim JH, Chung SH (2003) Enhancing the resolving power of least-squares inversion with active constraint balancing. Geophysics 68(3):931–941

    Google Scholar 

  • Yokoyama I, Alcaraz A, Pena O (1974) Gravimetric studies of Taal Volcano, Philippines. Bull Volcanol 39(3):479–489. doi:10.1007/BF02597268

    Article  Google Scholar 

  • Zlotnicki J, Nishida Y (2003) Morphological insights of self-potential anomalies on volcanoes. Surv Geophys 24:291. doi:10.1023/B :GEOP.0000004188.67923.ac

    Article  Google Scholar 

  • Zlotnicki J, Sasay Y, Toutain JP, Villacorte EU, Bernard A, Sabit, Julio P, Gordon JR, Corpuz JM, Ernesto G, Harada M, Punongbayan JT, Hase H, Nagao T (2009a) Combined electromagnetic geochemical and thermal surveys of Taal volcano (Philippines) during the period 2005–2006. Bull Volcanol 71(1):29–49. doi:10.1007/s00445-008-0205-2

    Article  Google Scholar 

  • Zlotnicki J, Sasay Y, Toutain JP, Villacorte EU, Harada M, PHILVOLCS team, Yvetot P, Fauquet F, Bernard A, Nagao T (2009b) Electromagnetic and geochemical methods applied to investigations of hydrothermal/volcanic unrests: examples of Taal and Miyake-jima (Japan) volcanoes. Phys Chem Earth 34:294–408

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank EMSEV Inter-Association (“ElectroMagnetic Studies of Earthquakes and Volcanoes”) supported by the International Union of Geodesy and Geophysics (IUGG) for the invitation to work in Taal volcano. We greatly thank Dr. Renato Solidum Jr., Director of the Philippine Institute of Volcanology and Seismology (PHIVOLCS), for allowing us to use some of their hardware in the field and for the participation of PHIVOLCS personnel in the field work. Director of the Volcanological section, Mr. Jaime Sincioco, has always supported with great efficiency the EMSEV–PHIVOLCS cooperation, and Mrs. Mariton Bornas continues to support the cooperation. We express special thanks to J.P. Sabit and A. Loza-Oic for their valuable assistance during fieldwork. This experiment was supported by a 2009–2010 IUGG grant and the French Embassy in Manila. The authors would like to thank Dr. Fournier and an anonymous reviewer for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Fikos.

Additional information

Editorial responsibility: P. Delmelle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fikos, I., Vargemezis, G., Zlotnicki, J. et al. Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines. Bull Volcanol 74, 1821–1831 (2012). https://doi.org/10.1007/s00445-012-0638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0638-5

Keywords

Navigation