Skip to main content

Advertisement

Log in

Spring water deficit and soil conditions matter more than seed origin and summer drought for the establishment of temperate conifers

  • Global change ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

In anticipation of more severe summer droughts, forestry in temperate Europe is searching for drought-resistant ecotypes of native tree species that might maintain ecosystem services in the future. We investigated how spring precipitation and soil conditions interact with summer drought and affect the establishment of conifer seedlings from different climatic origin. Emergence, establishment and subsequent performance of seedlings originating from autochthonous, Central Alpine, continental Eastern European, and Mediterranean Pinus sylvestris and Picea abies populations were studied in the dry Alpine Rhine valley, Switzerland, at three sites with differing soil water holding capacities and in 3 years with contrasting weather conditions. In addition to this natural inter-annual variation, precipitation was manipulated within sites with throughfall reduction roofs. Seedling establishment and growth were principally affected by the spring weather in the year of emergence. In years with average to positive spring water balance, seedlings grown at the site with the highest water holding capacity had 2–5 times more aboveground biomass than seedlings grown at sites with less favourable soils. Effects of seed origin were marginal and only detectable at the drier sites: contrary to our expectations, seedlings from the Central Alpine Rhone valley, where the climatic spring water deficit is large, outperformed those from the Mediterranean. Consequently, plantation of non-native populations from dryer origin will mitigate the effects of increased summer drought at driest sites only, while the inter-annual variability of spring precipitation will continue to enable temperate conifers to regenerate on a wide range of forest soils independent of seed origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitken SN, Yeaman S, Holliday JA, Wang TL, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111. doi:10.1111/j.1752-4571.2007.00013.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343. doi:10.1007/s10021-005-0126-2

    Article  Google Scholar 

  • Bussotti F, Pollastrini M, Holland V, Bruggemann W (2015) Functional traits and adaptive capacity of European forests to climate change. Environ Exp Bot 111:91–113. doi:10.1016/j.envexpbot.2014.11.006

    Article  Google Scholar 

  • Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA 108:1474–1478. doi:10.1073/pnas.1010070108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro J (2006) Short delay in timing of emergence determines establishment success in Pinus sylvestris across microhabitats. Ann Bot 98:1233–1240. doi:10.1093/aob/mcl208

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM (2004) Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J Ecol 92:266–277. doi:10.1111/j.0022-0477.2004.00870.x

    Article  Google Scholar 

  • CH2011 (2011) Swiss climate change scenarios CH2011. C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC, Zürich

  • Costa JM, Grant OM, Chaves MM (2013) Thermography to explore plant–environment interactions. J Exp Bot 64:3937–3949. doi:10.1093/jxb/ert029

    Article  CAS  PubMed  Google Scholar 

  • Dobrowski SZ, Swanson AK, Abatzoglou JT, Holden ZA, Safford HD, Schwartz MK, Gavin DG (2015) Forest structure and species traits mediate projected recruitment declines in western US tree species. Glob Ecol Biogeogr 24:917–927. doi:10.1111/geb.12302

    Article  Google Scholar 

  • Eilmann B, Buchmann N, Siegwolf R, Saurer M, Cherubini P, Rigling A (2010) Fast response of Scots pine to improved water availability reflected in tree-ring width and delta 13C. Plant Cell Environ 33:1351–1360. doi:10.1111/j.1365-3040.2010.02153.x

    CAS  PubMed  Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of Central Europe. Cambridge University Press, Cambridge

    Google Scholar 

  • Fischer AM, Keller DE, Liniger MA, Rajczak J, Schär C, Appenzeller C (2015) Projected changes in precipitation intensity and frequency in Switzerland: a multi-model perspective. Int J Climatol 35:3204–3219. doi:10.1002/joc.4162

    Article  Google Scholar 

  • Fridley JD, Wright JP (2012) Drivers of secondary succession rates across temperate latitudes of the Eastern USA: climate, soils, and species pools. Oecologia 168:1069–1077. doi:10.1007/s00442-011-2152-4

    Article  PubMed  Google Scholar 

  • Fridley JD, Grime JP, Askew AP, Moser B, Stevens CJ (2011) Soil heterogeneity buffers community response to climate change in species-rich grassland. Global Change Biol 17:2001–2011. doi:10.1111/j.1365-2486.2010.02347.x

    Article  Google Scholar 

  • García-Palacios P, Maestre FT, Bardgett RD, de Kroon H (2012) Plant responses to soil heterogeneity and global environmental change. J Ecol 100:1303–1314. doi:10.1111/j.1365-2745.2012.02014.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Gimmi U, Wohlgemuth T, Rigling A, Hoffmann CW, Bürgi M (2010) Land-use and climate change effects in forest compositional trajectories in a dry Central-Alpine valley. Ann Forest Sci 67:701. doi:10.1051/forest/2010026

    Article  Google Scholar 

  • Giuggiola A, Bugmann H, Zingg A, Dobbertin M, Rigling A (2013) Reduction of stand density increases drought resistance in xeric Scots pine forests. Forest Ecol Manag 310:827–835. doi:10.1016/j.foreco.2013.09.030

    Article  Google Scholar 

  • Grubb PJ (1977) Maintenance of species-richness in plant communities—importance of regeneration niche. Biol Rev Camb Philos Soc 52:107–145. doi:10.1111/j.1469-185X.1977.tb01347.x

    Article  Google Scholar 

  • Hanewinkel M, Hummel S, Cullmann DA (2010) Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany. Forest Ecol Manag 259:710–719. doi:10.1016/j.foreco.2009.08.021

    Article  Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas M, Nabuurs G, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207. doi:10.1038/nclimate1687

    Article  Google Scholar 

  • Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418. doi:10.1007/s00382-010-0810-6

    Article  Google Scholar 

  • Hereş AM, Camarero JJ, López BC, Martínez-Vilalta J (2014) Declining hydraulic performances and low carbon investments in tree rings predate Scots pine drought-induced mortality. Trees Struct Funct 28:1737–1750. doi:10.1007/s00468-014-1081-3

    Article  Google Scholar 

  • Ibàñez I, Clark JS, Dietze MC (2009) Estimating colonization potential of migrant tree species. Global Change Biol 15:1173–1188. doi:10.1111/j.1365-2486.2008.01777.x

    Article  Google Scholar 

  • Kapeller S, Lexer MJ, Geburek T, Hiebl J, Schüler S (2012) Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: selecting appropriate provenances for future climate. Forest Ecol Manag 271:46–57. doi:10.1016/j.foreco.2012.01.039

    Article  Google Scholar 

  • Laube J, Sparks TH, Estrella N, Hoefler J, Ankerst DP, Menzel A (2014) Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biol 20:170–182. doi:10.1111/gcb.12360

    Article  Google Scholar 

  • Lenoir J, Graae BJ, Aarrestad PA, Alsos IG, Armbruster WS, Austrheim G, Bergendorff C, Birks HJB, Bråthen KA, Brunet J, Bruun HH, Dahlberg CJ, Decocq G, Diekmann M, Dynesius M, Ejrnaes R, Grytnes JA, Hylander K, Klanderud K, Luoto M, Milbau A, Moora M, Nygaard B, Odland A, Ravolainen VT, Reinhardt S, Sandvik SM, Schei FH, Speed JDM, Tveraabak LU, Vandvik V, Velle LG, Virtanen R, Zobel M, Svenning JC (2013) Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Global Change Biol 19:1470–1481. doi:10.1111/gcb.12129

    Article  Google Scholar 

  • Leuzinger S, Luo YQ, Beier C, Dieleman W, Vicca S, Körner C (2011) Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 26:236–241. doi:10.1016/j.tree.2011.02.011

    Article  PubMed  Google Scholar 

  • Lévesque M, Rigling A, Bugmann H, Weber P, Brang P (2014) Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agric Forest Meteorol 197:1–12. doi:10.1016/j.agrformet.2014.06.001

    Article  Google Scholar 

  • Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas M-J, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, Psomas A, Poulter B, Hanewinkel M (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146:69–83. doi:10.1016/j.jenvman.2014.07.030

    Article  Google Scholar 

  • Lischke H, Zimmermann NE, Bolliger J, Rickebusch S, Löffler TJ (2006) TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol Model 199:409–420. doi:10.1016/j.ecolmodel.2005.11.046

    Article  Google Scholar 

  • Mátyás C, Ackzell L, Samuel CJA (2003) EUFORGEN Technical guidelines for genetic conservation and use for Scots pine (Pinus sylvestris). International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Modrzyński J, Eriksson G (2002) Response of Picea abies populations from elevational transects in the Polish Sudety and Carpathian mountains to simulated drought stress. Forest Ecol Manag 165:105–116. doi:10.1016/S0378-1127(01)00651-X

    Article  Google Scholar 

  • Moser B, Temperli C, Schneiter G, Wohlgemuth T (2010) Potential shift in tree species composition after interaction of fire and drought in the Central Alps. Eur J Forest Res 129:625–633. doi:10.1007/s10342-010-0363-6

    Article  Google Scholar 

  • Moser B, Metslaid M, Walthert L, Wasem U, Wohlgemuth T (2015) Verjüngungspotenzial verschiedener Waldföhren- und Fichtenherkünfte bei variabler Trockenheit. Schweiz Z Forstwes 166:399–407. doi:10.3188/szf.2015.0399

    Article  Google Scholar 

  • Nussbaumer A, Waldner P, Etzold S, Gessler A, Benham S, Thomsen IM, Jørgensen BB, Timmermann V, Verstraeten A, Soen G, Rautio P, Ukonmaanaho L, Skudnik M, Apuhtin V, Braun S, Wauer A (2016) Patterns of mast fruiting of common beech, sessile and common oak, Norway spruce and Scots pine in Central and Northern Europe. Forest Ecol Manag 363:237–251. doi:10.1016/j.foreco.2015.12.033

    Article  Google Scholar 

  • Piper FI, Fajardo A, Cavieres LA (2013) Simulated warming does not impair seedling survival and growth of Nothofagus pumilio in the southern Andes. Perspect Plant Ecol Evol Syst 15:97–105. doi:10.1016/j.ppees.2013.02.003

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reinert S, Bögelein R, Thomas FM (2012) Use of thermal imaging to determine leaf conductance along a canopy gradient in European beech (Fagus sylvatica). Tree Physiol 32:294–302. doi:10.1093/treephys/tps017

    Article  PubMed  Google Scholar 

  • Renwick KM, Rocca ME (2015) Temporal context affects the observed rate of climate-driven range shifts in tree species. Global Ecol Biogeogr 24:44–51. doi:10.1111/geb.12240

    Article  Google Scholar 

  • Richter S, Kipfer T, Wohlgemuth T, Guerrero C, Ghazoul J, Moser B (2012) Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 169:269–279. doi:10.1007/s00442-011-2191-x

    Article  PubMed  Google Scholar 

  • Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R, Dobbertin M (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biol 19:229–240. doi:10.1111/gcb.12038

    Article  Google Scholar 

  • Sánchez-Gómez D, Robson TM, Gascó A, Gil-Pelegrín E, Aranda I (2013) Differences in the leaf functional traits of six beech (Fagus sylvatica L.) populations are reflected in their response to water limitation. Environ Exp Bot 87:110–119. doi:10.1016/j.envexpbot.2012.09.011

    Article  Google Scholar 

  • Savage M, Brown PM, Feddema J (1996) The role of climate in a pine forest regeneration pulse in the southwestern United States. Ecoscience 3:310–318

    Article  Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416. doi:10.1111/j.1365-2699.2010.02407.x

    Article  Google Scholar 

  • Scherrer D, Bader MKF, Körner C (2011) Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agric Forest Meteorol 151:1632–1640. doi:10.1016/j.agrformet.2011.06.019

    Article  Google Scholar 

  • Schleppi P, Bucher-Wallin I, Hagedorn F, Körner C (2012) Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO2 concentration (canopy FACE). Global Change Biol 18:757–768. doi:10.1111/j.1365-2486.2011.02559.x

    Article  Google Scholar 

  • Skrøppa T (2003) EUFORGEN technical guidelines for genetic conservation and use for Norway spruce (Picea abies). International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Slavich E, Warton DI, Ashcroft MB, Gollan JR, Ramp D (2014) Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections? Divers Distrib 20:952–963. doi:10.1111/ddi.12216

    Article  Google Scholar 

  • Swidrak I, Gruber A, Oberhuber W (2014) Xylem and phloem phenology in co-occurring conifers exposed to drought. Trees Struct Funct 28:1161–1171. doi:10.1007/s00468-014-1026-x

    Article  Google Scholar 

  • Taeger S, Fussi B, Konnert M, Menzel A (2013) Large-scale genetic structure and drought-induced effects on European Scots pine (Pinus sylvestris L.) seedlings. Eur J Forest Res 132:481–496. doi:10.1007/s10342-013-0689-y

    Article  Google Scholar 

  • Teepe R, Dilling H, Beese F (2003) Estimating water retention curves of forest soils from soil texture and bulk density. J Plant Nutr Soil Sci 166:111–119. doi:10.1002/jpln.200390001

    Article  CAS  Google Scholar 

  • Thiel D, Kreyling J, Backhaus S, Beierkuhnlein C, Buhk C, Egen K, Huber G, Konnert M, Nagy L, Jentsch A (2014) Different reactions of central and marginal provenances of Fagus sylvatica to experimental drought. Eur J Forest Res 133:247–260. doi:10.1007/s10342-013-0750-x

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Sykes MT, Araujo MB (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers Distrib 12:49–60. doi:10.1111/j.1366-9516.2006.00216.x

    Article  Google Scholar 

  • von Arx G, Pannatier EG, Thimonier A, Rebetez M (2013) Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J Ecol 101:1201–1213. doi:10.1111/1365-2745.12121

    Article  Google Scholar 

  • Walthert L, Zimmermann S, Blaser P, Luster J, Lüscher P (2004) Waldböden der Schweiz. Grundlagen und Region Jura, vol 1. Hep Verlag, Bern

    Google Scholar 

  • Zackrisson O, Nilsson MC, Steijlen I, Hörnberg G (1995) Regeneration pulses and climate-vegetation interactions in nonpyrogenic boreal Scots pine stands. J Ecol 83:469–483. doi:10.2307/2261600

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Schnider and A. Walter for their invaluable help in setting up and running the experiment. We also acknowledge the field and laboratory work of C. Bachofen, H. Bachofen, C. Baumann, H. Ding, R. Köchli, K. Kramer, S. Kreuzer, Z. Michalova, J. Müller, T. Reich, S. Steinböck, D. Trummer, and E. Wilson. Seed collection was organised and assisted by S. Berdos, C. Calderón Guerrero, G. Golesch, B. Kinigadner, I. Latchev, A. Tashev und N. Tashev. Climate data were provided by MeteoSwiss, the Swiss Federal Office of Meteorology and Climatology.

Author contribution statement

TW and BM conceived and designed the experiment. BM, TW, MM, UW, and LW conducted the fieldwork. BM analysed the data, LW collaborated in soil analysis. BM wrote the manuscript with editorial advice from other authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Moser.

Ethics declarations

Funding

The project was funded by the BAFU/WSL initiative “Wald und Klimawandel” and the Amt für Wald und Naturgefahren des Kantons Graubünden. MM is supported by grant IUT21-4 of the Estonian Ministry of Education and Research.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Russell K. Monson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 19419 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moser, B., Walthert, L., Metslaid, M. et al. Spring water deficit and soil conditions matter more than seed origin and summer drought for the establishment of temperate conifers. Oecologia 183, 519–530 (2017). https://doi.org/10.1007/s00442-016-3766-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3766-3

Keywords

Navigation