Skip to main content

Advertisement

Log in

Potential shift in tree species composition after interaction of fire and drought in the Central Alps

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The future trajectory of forest ecosystems under climate change is heavily debated. Previous studies on the impacts of climate change on forest ecosystems have focused mainly on direct effects of altered climatic conditions, whereas interactions with disturbance events have been largely neglected. The aim of this study is to explore interactions of drought with fire disturbance and to assess their effects on tree species shifts in the European Central Alps. Tree recruitment after a stand replacing wildfire in the Rhone valley, Switzerland, was measured along an altitudinal temperature moisture gradient. Recruitment was more successful in pioneer species (Betula pendula, Populus tremula and Salix appendiculata) than in pre-fire stand forming (PFSF) species (Larix decidua, Picea abies and Pinus sylvestris). Seedling and sapling density was not related to fire intensity, but it correlated with the distance to the forest edge in PFSF species. The window of opportunity for seedling establishment was short (1–2 years), and moisture deficit was the main limiting factor for tree recruitment at lower altitudes. We suggest that prolonged drought periods, as projected under continued global warming, will further aggravate tree recruitment success after fire disturbance at low altitudes of the Central Alps and may eventually lead to a shift from PFSF species to either more drought-tolerant species or to forest-free vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Attiwill PM (1994) The disturbance of forest ecosystems—the ecological basis for conservative management. For Ecol Manag 63:247–300

    Article  Google Scholar 

  • Badeck FW, Bondeau A, Bottcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylha K, Koffi B, Palutikof J, Scholl R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95

    Article  Google Scholar 

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343

    Article  Google Scholar 

  • Braatne JH, Rood SB, Heilman PE (1996) Life history, ecology and conservation of riparian cottonwoods in North America. In: Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa, pp 57–86

    Google Scholar 

  • Brang P (1998) Early seedling establishment of Picea abies in small forest gaps in the Swiss Alps. Can J For Res 28:626–639

    Article  Google Scholar 

  • Brown KR, Zobel DB, Zasada JC (1988) Seed dispersal, seedling emergence, and early survival of Larix laricina (Duroi) K. Koch in the Tanana Valley, Alaska. Can J For Res 18:306–314

    Article  Google Scholar 

  • Brzeziecki B, Kienast F, Wildi O (1995) Modelling potential impacts of climate-change on the spatial-distribution of zonal forest communities in Switzerland. J Veg Sci 6:257–268

    Article  Google Scholar 

  • Bugmann H (1999) Anthropogene Klimaveränderung, Sukzessionsprozesse und forstwirtschaftliche Optionen. Schweiz Z Forstwes 150:275–287

    Article  Google Scholar 

  • Castro J (2006) Short delay in timing of emergence determines establishment success in Pinus sylvestris across microhabitats. Ann Bot 98:1233–1240

    Article  PubMed  Google Scholar 

  • Castro J, Zamora R, Hodar JA, Gomez JM (2004) Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J Ecol 92:266–277

    Article  Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM (2005) Alleviation of summer drought boosts establishment success of Pinus sylvestris in a Mediterranean mountain: an experimental approach. Plant Ecol 181:191–202

    Article  Google Scholar 

  • Chapin FS, Callaghan TV, Bergeron Y, Fukuda M, Johnstone JF, Juday G, Zimov SA (2004) Global change and the boreal forest: thresholds, shifting states or gradual change? Ambio 33:361–365

    PubMed  Google Scholar 

  • Charron I, Greene DF (2002) Post-wildfire seedbeds and tree establishment in the southern mixedwood boreal forest. Can J For Res 32:1607–1615

    Article  Google Scholar 

  • Clark JS, Macklin E, Wood L (1998) Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecol Monogr 68:213–235

    Article  Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51:723–734

    Article  Google Scholar 

  • Dovciak M, Hrivnak R, Ujhazy K, Gomory D (2008) Seed rain and environmental controls on invasion of Picea abies into grassland. Plant Ecol 194:135–148

    Article  Google Scholar 

  • Elkin C, Weibel P, Bugmann H (2010) Zukünftiges Waldbrandrisiko. In: Leben mit Waldbrand. Merkblatt für die Praxis. Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL, Birmensdorf, pp 13–14

  • Greene DF, Johnson EA (2000) Tree recruitment from burn edges. Can J For Res 30:1264–1274

    Article  Google Scholar 

  • Greene DF, Noel J, Bergeron Y, Rousseau M, Gauthier S (2004) Recruitment of Picea mariana, Pinus banksiana, and Populus tremuloides across a burn severity gradient following wildfire in the southern boreal forest of Quebec. Can J For Res 34:1845–1857

    Article  Google Scholar 

  • Greene DF, Macdonald SE, Cumming S, Swift L (2005) Seedbed variation from the interior through the edge of a large wildfire in Alberta. Can J For Res 35:1640–1647

    Article  Google Scholar 

  • Greene DF, Macdonald SE, Haeussler S, Domenicano S, Noel J, Jayen K, Charron I, Gauthier S, Hunt S, Gielau ET, Bergeron Y, Swift L (2007) The reduction of organic-layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed. Can J For Res 37:1012–1023

    Article  Google Scholar 

  • Habrouk A, Retana J, Espelta JM (1999) Role of heat tolerance and cone protection of seeds in the response of three pine species to wildfires. Plant Ecol 145:91–99

    Article  Google Scholar 

  • Hancock MH, Summers RW, Amphlett A, Willi J (2009) Testing prescribed fire as a tool to promote Scots pine Pinus sylvestris regeneration. Eur J For Res 128:319–333

    Google Scholar 

  • Hanssen KH (2003) Natural regeneration of Picea abies on small clear-cuts in SE Norway. For Ecol Manag 180:199–213

    Article  Google Scholar 

  • Henig-Sever N, Poliakov D, Broza M (2001) A novel method for estimation of wild fire intensity based on ash pH and soil microarthropod community. Pedobiologia 45:98–106

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. WMO, Geneva

    Google Scholar 

  • Jayen K, Leduc A, Bergeron Y (2006) Effect of fire severity on regeneration success in the boreal forest of northwest Quebec, Canada. Ecoscience 13:143–151

    Article  Google Scholar 

  • Johnstone JF, Chapin FS (2006) Fire interval effects on successional trajectory in boreal forests of northwest Canada. Ecosystems 9:268–277

    Article  Google Scholar 

  • Johnstone JF, Kasischke ES (2005) Stand-level effects of soil burn severity on postfire regeneration in a recently burned black spruce forest. Can J For Res 35:2151–2163

    Article  Google Scholar 

  • Jump AS, Hunt JM, Penuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12:2163–2174

    Article  Google Scholar 

  • Keyser TL, Lentile LB, Smith FW, Shepperd WD (2008) Changes in forest structure after a large, mixed-severity wildfire in ponderosa pine forests of the Black Hills, South Dakota, USA. For Sci 54:328–338

    Google Scholar 

  • Krüssmann G (1983) Handbuch der Nadelgehölze. Parey, Berlin

    Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77

    Article  Google Scholar 

  • Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14

    Article  Google Scholar 

  • Londo G (1976) Decimal scale for releves of permanent quadrats. Vegetatio 33:61–64

    Article  Google Scholar 

  • McEuen AB, Curran LM (2004) Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Ecology 85:507–518

    Article  Google Scholar 

  • Müller-Schneider P (1986) Verbreitungsbiologie der Blütenpflanzen Graubündens. Veröff Geobot Inst ETH Stift Rübel Zürich 85:1–263

    Google Scholar 

  • Oleskog G, Sahlen K (2000) Effects of seedbed substrate on moisture conditions and germination of Scots pine (Pinus sylvestris) seeds in a mixed conifer stand. New For 20:119–133

    Google Scholar 

  • Östlund L, Zackrisson O, Axelsson AL (1997) The history and transformation of a Scandinavian boreal forest landscape since the 19th century. Can J For Res 27:1198–1206

    Google Scholar 

  • Ott E, Frehner M, Frey HU, Lüscher P (1997) Gebirgsnadelwälder. ein praxisorientierter Leitfaden für eine standortgerechte Waldbehandlung, Paul Haupt, Bern

    Google Scholar 

  • Overpeck JT, Rind D, Goldberg R (1990) Climate-induced changes in forest disturbance and vegetation. Nature 343:51–53

    Article  Google Scholar 

  • Payette S, Filion L, Delwaide A, Begin C (1989) Reconstruction of tree-line vegetation response to long-term climate change. Nature 341:429–431

    Article  Google Scholar 

  • Peñuelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30:829–837

    Article  Google Scholar 

  • Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. For Ecol Manag 242:688–699

    Article  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9

    Article  Google Scholar 

  • Rigling A, Cherubini P (1999) Wieso sterben die Waldföhren im ‘Telwald’ bei Visp? Schweiz Z Forstwes 140:113–131

    Article  Google Scholar 

  • Rigling A, Braker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–121

    Article  Google Scholar 

  • Rodríguez-Pérez J, Traveset A (2007) A multi-scale approach in the study of plant regeneration: finding bottlenecks is not enough. Perspect Plant Ecol Evol Syst 9:1–13

    Article  Google Scholar 

  • Rohmeder E (1972) Das Saatgut in der Forstwirtschaft. Paul Parey, Hamburg

    Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  PubMed  Google Scholar 

  • Schmidli J, Frei C (2005) Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Int J Climatol 25:753–771

    Article  Google Scholar 

  • Schumacher S, Bugmann H (2006) The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob Change Biol 12:1435–1450

    Article  Google Scholar 

  • Sykes MT, Prentice IC (1996) Climate change, tree species distributions and forest dynamics: a case study in the mixed conifer northern hardwoods zone of northern Europe. Clim Change 34:161–177

    Article  Google Scholar 

  • Sykes MT, Prentice IC, Cramer W (1996) A bioclimatic model for the potential distributions of north European tree species under present and future climates. J Biogeogr 23:203–233

    Google Scholar 

  • Tercero-Bucardo N, Kitzberger T, Veblen TT, Raffaele E (2007) A field experiment on climatic and herbivore impacts on post-fire tree regeneration in north-western Patagonia. J Ecol 95:771–779

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Sykes MT, Araujo MB (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers Distrib 12:49–60

    Article  Google Scholar 

  • Tinner W, Conedera M, Ammann B, Lotter AF (2005) Fire ecology north and south of the Alps since the last ice age. Holocene 15:1214–1226

    Article  Google Scholar 

  • Turner MG, Romme WH, Gardner RH, Hargrove WW (1997) Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol Monogr 67:411–433

    Article  Google Scholar 

  • Valkonen S, Maguire DA (2005) Relationship between seedbed properties and the emergence of spruce germinants in recently cut Norway spruce selection stands in southern Finland. For Ecol Manag 210:255–266

    Article  Google Scholar 

  • Vanha-Majamaa I, Tuittila E, Tonteri T, Suominen R (1996) Seedling establishment after prescribed burning of a clear-cut and a partially cut mesic boreal forest in southern Finland. Silva Fenn 30:31–45

    Google Scholar 

  • Walther GR (2003) Plants in a warmer world. Perspect Plant Ecol Evol Syst 6:169–185

    Article  Google Scholar 

  • Weber P, Bugmann H, Rigling A (2007) Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J Veg Sci 18:777–792

    Article  Google Scholar 

  • Wohlgemuth T, Kull P, Wütrich H (2002) Disturbance of microsites and early tree regeneration after windthrow in Swiss mountain forests due to the winter storm Vivian 1990. For Snow Landsc Res 77:17–47

    Google Scholar 

  • Wohlgemuth T, Duelli P, Ginzler C, Gödickemeier I, Hadorn P, Hagedorn F, Küttel P, Lüscher P, Moretti M, Schneiter G, Sciacca S, Wermelinger B (2005) Ökologische Resilienz nach Feuer: Die Waldbrandfläche Leuk als Modellfall. Schweiz Z Forstwes 156:345–352

    Article  Google Scholar 

  • Zackrisson O (1977) Influence of forest fires on north Swedish boreal forest. Oikos 29:22–32

    Article  Google Scholar 

  • Zackrisson O, Nilsson MC, Jaderlund A, Wardle DA (1999) Nutritional effects of seed fall during mast years in boreal forest. Oikos 84:17–26

    Article  Google Scholar 

  • Zasada JC, Sharik TL, Nygren M (1992) The reproductive process in boreal forest trees. In: Shugart HH, Leemans R, Bonan G (eds) A system analysis of the global boreal forest. Cambridge University Press, Cambridge, pp 85–125

    Chapter  Google Scholar 

  • Zumbrunnen T, Bugmann H, Conedera M, Bürgi M (2009) Linking forest fire regimes and climate—a historical analysis in a dry inner alpine valley. Ecosystems 12:73–86

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge field work by Sara Bangeter, Alexandra Bunge, Stefan Hadorn, Tabea Kipfer, Marlen Kube, Salome Leugger and Lukas Wohlgemuth and logistic support from Claudio Cattaneo, Dieter Trummer and Ulrich Wasem. We thank A. Burkart for providing the data on cone production, and Ilkka Vanha-Majamaa and Peter Brang for comments on the manuscript. The study was supported by the Dienststelle für Wald und Landschaft, Canton of Valais, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Moser.

Additional information

Communicated by J. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, B., Temperli, C., Schneiter, G. et al. Potential shift in tree species composition after interaction of fire and drought in the Central Alps. Eur J Forest Res 129, 625–633 (2010). https://doi.org/10.1007/s10342-010-0363-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-010-0363-6

Keywords

Navigation