Skip to main content
Log in

Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Anthocyanins are widely distributed water-soluble phytochemical pigments belonging to the flavonoid group. To date, limited knowledge is available about the regulatory roles of miRNAs in anthocyanin biosynthesis in plants. To identify the miRNAs associated with anthocyanin biosynthesis in radish, five small RNA (sRNA) libraries constructed from ‘Xinlimei’ radish roots at 11, 21, 44, 56 and 73 days (d) were examined using high-throughput sequencing technology. A total of 102.02 million (M) clean reads were generated, from which 483 known and 1415 novel miRNAs were identified. Combined with target prediction and annotation, 72 differentially expressed miRNAs (52 known and 20 novel miRNAs) were more likely to participate in anthocyanin biosynthesis. Several target genes for these miRNAs encode a few transcription factors, including Myb domain (MYB), basic helix-loop-helix (bHLH), WD40 repeat, squamosa promoter binding protein like (SPL), auxin response factor (ARF), ethylene insensitive 3 (EIN3), WRKY and MADS-box proteins. Furthermore, the expression patterns of some anthocyanin biosynthesis related miRNAs and their corresponding targets were validated by RT-qPCR. Based on the characterization of anthocyanin biosynthesis related miRNAs and their target genes, a putative miRNA-target module regulating anthocyanin biosynthesis was proposed. This study represents the first genome-wide identification of miRNAs associated with anthocyanin biosynthesis in radish, and provides insights into the molecular mechanisms underlying regulation of anthocyanin biosynthesis in radish and other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    Article  CAS  PubMed  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2011) GenBank. Nucleic Acids Res 39:32–37

    Article  Google Scholar 

  • Boke H, Ozhuner E, Turktas M, Parmaksiz I, Ozcan S, Unver T (2015) Regulation of the alkaloid biosynthesis by miRNA in opium poppy. Plant Biotechnol J 13(3):409–420

    Article  CAS  PubMed  Google Scholar 

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:272–279

    Article  CAS  PubMed  Google Scholar 

  • Castellarin SD, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Dig G (2007) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ 30:1381–1399

    Article  CAS  PubMed  Google Scholar 

  • Eldem V, Akcay UC, Ozhuner E, Bakir Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One 7:e50298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49(3):414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan R, Li Y, Li C, Zhang Y (2015) Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS One 10(9):e0139002

    Article  PubMed  PubMed Central  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66(1):94–116

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  CAS  PubMed  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435

    Article  PubMed  PubMed Central  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23(4):1512–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33:121–124

    Article  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:154–158

    Article  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57(1):761–780

    Article  CAS  PubMed  Google Scholar 

  • He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    Article  CAS  PubMed  Google Scholar 

  • Ji XH, Wang YT, Zhang R, Wu SJ, An MM, LiM Wang C, Chen X, Zhang Y, Chen X (2015) Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell Tiss Organ Cult 120:325–337

    Article  CAS  Google Scholar 

  • Jia X, Shen J, Liu H, Li F, Ding N, Gao C, Pattanaik S, Patra B, Li R, Yuan L (2015) Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta 242:283–293

    Article  CAS  PubMed  Google Scholar 

  • Jiang YJ, Liang G, Yang SZ, Yu DQ (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26:230–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing P, Bomser JA, Schwartz SJ, He J, Magnuson BA, Giusti MM (2008) Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. J Agric Food Chem 56(20):9391–9398

    Article  CAS  PubMed  Google Scholar 

  • Kaneda M, Schuetz M, Lin BSP, Chanis C, Hamberger B, Weatern TL, Ehlting J, Samuels AL (2011) ABC transporters coordinately expressed during lignifications of Arabidopsis stems include a set of ABCBs associated with auxin transport. J Exp Bot 62:2063–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304(5673):982

    Article  PubMed  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  CAS  PubMed  Google Scholar 

  • Kuhn C, Grof CP (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13:288–298

    Article  PubMed  Google Scholar 

  • Kwon Y, Oh JE, Noh H, Hong S, Bhoo SH, Lee H (2011) The ethylene signaling pathway has a negative impact on sucrose-induced anthocyanin accumulation in Arabidopsis. J Plant Res 124:193–200

    Article  CAS  PubMed  Google Scholar 

  • Lalusin AG, Nishita K, Kim S, Ohta M, Fujimura T (2006) A new MADS-box gene (IbMADS10) from sweet potato (Ipomoea batatas (L.) Lam) is involved in the accumulation of anthocyanin. Mol Gen Genom 275:44–54

    Article  CAS  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Li W, Wu Y, Chen C, Lei J (2013) De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS One 8(1):e48156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Shi MZ, Xie DY (2014) Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-d cells metabolically programmed by auxins. Planta 239:765–781

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2(−ΔΔCT) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lorenc-Kukula K, Jafra S, Oszmianski J, Szopa J (2005) Ectopic expression of anthocyanin 5-o-glucosyltransferase in potato tuber causes increased resistance to bacteria. J Agric Food Chem 53:272–281

    Article  CAS  PubMed  Google Scholar 

  • Lukasik A, Halina P, Leszek P, Zofia S, Piotr Z (2013) High-throughput sequencing identification of novel and conserved miRNAs in the Brassica oleracea leaves. BMC Genom 14:801

    Article  CAS  Google Scholar 

  • Luo QJ, Mittal A, Jia F, Rock CD (2012) An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Mol Biol 80:117–129

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra P, Pandey A, Tiwari M, Chandrashekar K, Sidhu OP, Asif MH, Chakrabarty D, Singh PK, Trivedi PK, Nath P, Tuli R (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol 152:2258–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagira Y, Ozeki Y (2004) A system in which anthocyanin synthesis is induced in regenerated torenia shoots. J Plant Res 117:377–383

    Article  CAS  PubMed  Google Scholar 

  • Nagira Y, Ikegami K, Koshiba T, Ozeki Y (2006) Effect of ABA upon anthocyanin synthesis in regenerated torenia shoots. J Plant Res 119:137–144

    Article  CAS  PubMed  Google Scholar 

  • Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng DW, Zhang C, Miller M, Palmer G, Whiteley M, Tholl D, Chen ZJ (2011) Cis-and trans-regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell 23(5):1729–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie S, Xu L, Wang Y, Huang D, Muleke EM, Sun X, Wang R, Xie Y, Gong Y, Liu L (2015) Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:14034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pani A, Mahapatra RK (2013) Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags. Genom Data 1:2–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual-Teresa DS, Moreno DA, Garcia-Viguera C (2010) Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 11(4):1679–1703

    Article  PubMed  PubMed Central  Google Scholar 

  • Robert-Seilaniantz A, MacLean D, Jikumaru Y, Hill L, Yamaguchi S, Kamiya Y, Jones JDG (2011) The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J 67(2):218–231

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Saona LE, Giusti MM, Wrolstad RE (1999) Color and pigment stability of red radish and red-fleshed potato anthocyanins in juice model systems. J Food Sci 64(3):451–456

    Article  CAS  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39:519–525

    Article  CAS  PubMed  Google Scholar 

  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FD, Li LB, Liu LF, Li HY, Zhang YH, Yao YY, Ni ZF, Gao JW (2012) High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Genet Genom 287:555–563

    Article  CAS  Google Scholar 

  • Wang Y, Liu W, Shen H, Zhai L, Xu L, Wang R, Gong Y, Limera C, Liu L (2015) Identification of radish (Raphanus sativus L.) miRNAs and their target genes to explore miRNA-mediated regulatory networks in lead (Pb) stress responses by high throughput sequencing and degradome analysis. Plant Mol Biol Rep 33:358–376

    Article  CAS  Google Scholar 

  • Wei X, Zhang X, Shen D, Wang H, Wu Q, Lu P, Qiu Y, Song J, Zhang Y, Li X (2013) Transcriptome analysis of Barbarea vulgaris infested with diamondback moth (Plutella xylostella) larvae. PLoS One 8(5):e64481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–525

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Cai J, Yang Y, Liu Z (2013) Overexpression of microRNA828 reduces anthocyanin accumulation in Arabidopsis. Plant Cell Tiss Organ Cult 115:159–167

    Article  CAS  Google Scholar 

  • Yu ZX, Wang LJ, Zhao B, Shan CM, Zhang YH, Chen DF, Chen XY (2015) Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Mol Plant 8:98–110

    Article  CAS  PubMed  Google Scholar 

  • Zhai LL, Xu L, Wang Y, Huang DQ, Yu RG, Limera C, Gong Y, Liu L (2014) Genome wide identification of embryogenesis-associated microRNAs in radish (Raphanus sativus L.) by high-throughput sequencing. Plant Mol Biol Rep 32:900–915

    Article  CAS  Google Scholar 

  • Zhang X, Yue Z, Mei S, Qiu Y, Yang X, Chen X, Chen F, Wu Z, Sun Y, Jing Y, Liu B, Shen D, Wang H, Cui N, Duan Y, Wu J, Wang J, Gan C, Wang J, Wang X, Li X (2015) A de novo genome of a Chinese radish cultivar. Hortic Plant J 1(3):155–164

    Google Scholar 

  • Zhu H, Xia R, Zhao B, An Y, Dardick CD, Callahan AM, Liu Z (2012) Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biol 12:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Science and Technology of the People’s Republic of China (2013BAD01B04, 2012BAD02B01, and 2012AA021801-4), the Outstanding Talents Program and Innovation Program (Vegetable Germplasm Resources Team, CAAS-ASTIP-2013-IVFCAAS) of the Chinese Academy of Agricultural Sciences and the Key Laboratory of Horticultural Crops Genetic Improvement, Ministry of Agriculture of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xixiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2016_1268_MOESM1_ESM.doc

Supplementary Table S1. Primers used for quantification and validation of selected miRNAs and their potential targets (DOC 40 kb)

Supplementary Table S2. Known miRNAs identified from five radish root libraries (XLS 86 kb)

Supplementary Table S3. Novel miRNAs precursor candidates identified for five radish root libraries (XLS 1360 kb)

Supplementary Table S4. Unique novel miRNA sequences generated from five radish root libraries (XLS 409 kb)

Supplementary Table S5. Differentially expressed known miRNAs among five radish root libraries (XLS 93 kb)

Supplementary Table S6. Differentially expressed novel miRNAs among five radish root libraries (XLS 64 kb)

Supplementary Table S7. Target prediction for differentially expressed miRNAs (XLS 213 kb)

438_2016_1268_MOESM8_ESM.tif

Supplementary Fig S1. Length distribution of small RNAs (sRNAs) in the libraries of the radish roots. The y-axis indicates the percentage of sRNA reads in each library, whereas the x-axis corresponds to the nucleotide (nt) length of sRNAs (TIFF 732 kb)

Supplementary Fig S2. Venn diagram of known miRNAs in the five libraries of radish roots (TIFF 1139 kb)

Supplementary Fig S3. Secondary structure prediction of novel miRNAs precursors (PDF 2047 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Qiu, Y., Duan, M. et al. Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing. Mol Genet Genomics 292, 215–229 (2017). https://doi.org/10.1007/s00438-016-1268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1268-y

Keywords

Navigation