Skip to main content
Log in

Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Red pap1-D cells of Arabidopsis thaliana have been cloned from production of anthocyanin pigmentation 1-Dominant (pap1-D) plants. The red cells are metabolically programmed to produce high levels of anthocyanins by a WD40-bHLH-MYB complex that is composed of the TTG1, TT8/GL3 and PAP1 transcription factors. Here, we report that indole 3-acetic acid (IAA), naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) regulate anthocyanin biosynthesis in these red cells. Seven concentrations (0, 0.2, 0.4, 2.2, 9, 18 and 27 μM) were tested for the three auxins. IAA and 2,4-D at 2.2–27 μM reduced anthocyanin levels. NAA at 0–0.2 μM or above 9 μM also decreased anthocyanin levels, but from 0.4 to 9 μM, it increased them. HPLC–ESI–MS analysis identified seven cyanin molecules that were produced in red pap1-D cells, and their levels were affected by auxins. The expression levels of ten genes, including six transcription factors (TTG1, EGL3, MYBL2, TT8, GL3 and PAP1) and four pathway genes (PAL1, CHS, DFR and ANS) involved in anthocyanin biosynthesis were analyzed upon various auxin treatments. The resulting data showed that 2,4-D, NAA and IAA control anthocyanin biosynthesis by regulating the expression of TT8, GL3 and PAP1 as well as genes in the anthocyanin biosynthetic pathway, such as DFR and ANS. In addition, the expression of MYBL2, PAL1 and CHS in red pap1-D and wild-type cells differentially respond to the three auxins. Our data demonstrate that the three auxins regulate anthocyanin biosynthesis in metabolically programmed red cells via altering the expression of transcription factor genes and pathway genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al Qurraan AF, Sawwan JS, Al Abdallat AM (2012) Analysis of phenylalanine ammonia-lyase gene expression in callus cells of hawthorn (Crataegus aronia L.). J Food Agric Environ 10(3–4):572–576

    CAS  Google Scholar 

  • Asano S, Otobe K (2011) Production of phytochemicals by using habituated and long-term cultured cells. Plant Biotechnol 28(1):51–62. doi:10.5511/plantbiotechnology.10.1109a

    Article  CAS  Google Scholar 

  • Ball E (1967) Production of a group of anthocyanins in callus culture under influence of an auxin. Plant Physiol S 42:S24

    Google Scholar 

  • Bao Do C, Cormier F (1991) Effects of low nitrate and high sugar concentrations on anthocyanin content and composition of grape (Vitis vinifera L.) cell suspension. Plant Cell Rep 9(9):500–504

    Article  CAS  PubMed  Google Scholar 

  • Barnes JS, Nguyen HP, Shen S, Schug KA (2009) General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry. J Chromatogr A 1216(23):4728–4735

    Article  CAS  PubMed  Google Scholar 

  • Barrios J, Cordero CP, Aristizabal F, Heredia FJ, Morales AL, Osorio C (2010) Chemical analysis and screening as anticancer agent of anthocyanin-rich extract from Uva Caimarona (Pourouma cecropiifolia Mart.) fruit. J Agric Food Chem 58(4):2100–2110. doi:10.1021/jf9041497

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt C, Lee MM, Gonzalez A, Zhang F, Lloyd A, Schiefelbein J (2003) The bHLH genes GLABRA3 (GL3) and enhancer of glabra3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130(26):6431–6439. doi:10.1242/dev.00880

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt C, Zhao M, Gonzalez A, Lloyd A, Schiefelbein J (2005) The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 132(2):291–298. doi:10.1242/dev.01565

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan MIH, Kim JY, Ha TJ, Kim SY, Cho KO (2012) Anthocyanins extracted from black soybean seed coat protect primary cortical neurons against in vitro ischemia. Biol Pharm Bull 35(7):999–1008

    Article  CAS  PubMed  Google Scholar 

  • Blank F (1947) The anthocyanin pigments of plants. Bot Rev 13(5):241–317

    Article  CAS  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12(12):2383–2394. doi:10.1105/tpc.12.12.2383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bottcher C, Harvey K, Forde CG, Boss PK, Davies C (2011) Auxin treatment of pre-veraison grape (Vitis vinifera L.) berries both delays ripening and increases the synchronicity of sugar accumulation. Aust J Grape Wine Res 17(1):1–8. doi:10.1111/j.1755-0238.2010.00110.x

    Article  CAS  Google Scholar 

  • Bottcher C, Boss PK, Davies C (2012) Delaying riesling grape berry ripening with a synthetic auxin affects malic acid metabolism and sugar accumulation, and alters wine sensory characters. Funct Plant Biol 39(9):745–753. doi:10.1071/fp12132

    Article  Google Scholar 

  • Bowen-Forbes CS, Zhang YJ, Nair MG (2010) Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J Food Compos Anal 23(6):554–560. doi:10.1016/j.jfca.2009.08.012

    Article  CAS  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock H-P, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotech 26 (11):1301–1308. doi:http://www.nature.com/nbt/journal/v26/n11/suppinfo/nbt.1506_S1.html

    Google Scholar 

  • Clifford MN (2000) Anthocyanins––nature, occurrence and dietary burden. J Sci Food Agric 80(7):1063–1072. doi:10.1002/(sici)1097-0010(20000515)80:7<1063:aid-jsfa605>3.0.co;2-q

    Article  CAS  Google Scholar 

  • Cormier F, Do CB, Moresoli C, Archambault J, Chavarie C, Chaouki F, Pépin M-F (1992) Anthocyanin release from grape (Vitis vinifera L.) cell suspension. Biotechnol Lett 14(11):1029

    Article  CAS  Google Scholar 

  • Dai J, Gupte A, Gates L, Mumper RJ (2009) A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: extraction methods, stability, anticancer properties and mechanisms. Food Chem Toxicol 47(4):837–847. doi:10.1016/j.fct.2009.01.016

    Article  CAS  PubMed  Google Scholar 

  • Decendit A, Liu D, Ouelhazi L, Doireau P, Merillon JM, Rideau M (1992) Cytokinin-enhanced accumulaiton of indole alkaloids in Catharanthus roseus cell cultures––the factors affecting cytokinin response. Plant Cell Rep 11(8):400–403

    Article  CAS  PubMed  Google Scholar 

  • Denev P, Ciz M, Ambrozova G, Lojek A, Yanakieva I, Kratchanova M (2010) Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem 123(4):1055–1061. doi:10.1016/j.foodchem.2010.05.061

    Article  CAS  Google Scholar 

  • Do CB, Cormier F (1991a) Effects of high ammonium concentrations on growth and anthocyanin formation in grape (Vitis vinifera L.) cell suspension cultured in a production medium. Plant Cell Tiss Org Cult 27(2):169–174

    Article  Google Scholar 

  • Do CB, Cormier FO (1991b) Accumulation of peonidin 3-glucoside enhanced by osmotic stress in grape (Vitis vinifera L.) cell suspension. Plant Cell Tiss Org Cult 24(1):49

    Article  CAS  Google Scholar 

  • Dougall DK, Johnson JM, Whitten GH (1980) A clonal analysis of anthocyanin accumulation by cell cultures of wild carrot. Planta 149(3):292–297

    Article  CAS  PubMed  Google Scholar 

  • Dougall DK, LaBrake S, Whitten GH (1983) Growth and anthocyanin accumulation rates of carrot suspension cultures grown with excess nutrients after semicontinuous culture with different limiting nutrients at several dilution rates, pHs, and temperatures. Biotechnol Bioeng 25(2):581–594

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Gourrierec JL, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul J-M, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55(6):940–953

    Article  CAS  PubMed  Google Scholar 

  • Faria A, Pestana D, Teixeira D, de Freitas V, Mateus N, Calhau C (2010) Blueberry anthocyanins and pyruvic acid adducts: anticancer properties in breast cancer cell lines. Phytother Res 24(12):1862–1869. doi:10.1002/ptr.3213

    Article  CAS  PubMed  Google Scholar 

  • Feyissa D, Løvdal T, Olsen K, Slimestad R, Lillo C (2009) The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves. Planta 230:747–754

    Article  CAS  PubMed  Google Scholar 

  • Given NK, Venis MA, Grierson D (1988) Phenylalanine ammonia-lyase activity and anthocyanin synthesis in ripening strawberry fruit. J Plant Physiol 133:25–30

    Article  CAS  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827. doi:10.1111/j.1365-313X.2007.03373.x

    Article  CAS  PubMed  Google Scholar 

  • Gortner RA (1918) The anthocyanin pigments of plants. Science 47(1217):418–419

    Article  Google Scholar 

  • Grabowski L, Heim S, Wagner KG (1991) Rapid changes in the enzyme activities and metabolites of the phosphatidylinositol-cycle upon induction by growth substances of auxin-starved suspension cultured Catharanthus roseus cells. Plant Sci 75:33–38

    Article  CAS  Google Scholar 

  • Hall RD, Yeoman MM (1986a) Factors determining anthocyanin yield in cell cultures of Catharanthus roseus (L.) G. Don. New Phytol 103(1):33–43

    Article  CAS  Google Scholar 

  • Hall RD, Yeoman MM (1986b) Temporal and spatial heterogeneity in the accumulation of anthocyanins in cell cultures of Catharanthus roseus (L.) G.Don. J Exp Bot 37(1):48–60. doi:10.1093/jxb/37.1.48

    Article  CAS  Google Scholar 

  • Harborne JB, Baxter H (1999) Anthocyanins. In: Harborne JB, Baxter H (eds) The handbook of natural flavonoids, vol I. Wiley, New York, pp 1–115

    Google Scholar 

  • Harborne JB, Grayer RJ (1988) The Anthocyanins. In: Harborne JB (ed) The flavonoids: advances in research since 1980. Chapman and Hall Ltd, London, pp 1–20

    Chapter  Google Scholar 

  • Harrow B (1930) Anthocyanin as an indicator. Science 72(1853):14

    Article  CAS  PubMed  Google Scholar 

  • Hirner AA, Seitz HU (2000) Isoforms of chalcone synthase in Daucus carota L. and their differential expression in organs from the European wild carrot and in ultraviolet-A-irradiated cell cultures. Planta 210(6):993–998

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra SS, Harkes PAA, Verpoorte R, Libbenga KR (1990) Effects of auxin on cytodifferentiation and production of quinoline alkaloids in compact globular structures of Cinchona ledgeriana. Plant Cell Rep 8(10):571–574

    Article  CAS  PubMed  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7(7):1071–1083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka A (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167(2):247–252. doi:10.1016/j.plantsci.2004.03.021

    Article  CAS  Google Scholar 

  • Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F (2005) Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar ayamurasaki. Biosci Biotechnol Biochem 69(5):979–988

    Article  CAS  PubMed  Google Scholar 

  • Koca I, Karadeniz B (2009) Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Sci Hortic 121(4):447–450

    Article  CAS  Google Scholar 

  • Kurz WGW, Chatson KB, Constabel F, Kutney JP, Choi LSL, Kolodziejczyk P, Sleigh SK, Stuart KL, Worth BR (1980) Alkaloid production in Catharanthus roseus cell cultures: initial studies on cell lines and their alkaloid content. Phytochemistry 19:2583–2587

    Article  CAS  Google Scholar 

  • Kutney JP, Choi LSL, Kolodziejczyk P, Sleigh SK, Stuart KL, Worth BR, Kurz WGW, Chatson KB, Constabel F (1980) Alkaloid production in Catharanthus roseus cell cultures: isolation and characterization of alkaloids from one cell line. Phytochemistry 19:2589–2595

    Article  CAS  Google Scholar 

  • Matsui K, Umemura Y, Ohme-Takagi M (2008) AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 55(6):954–967

    Article  CAS  PubMed  Google Scholar 

  • Meyer HJ, Vanstaden J (1995) The in-vitro productin of an anthocyanin from callus-cultures of Oxalis linearis. Plant Cell Tiss Org Cult 40(1):55–58. doi:10.1007/bf00041119

    Article  CAS  Google Scholar 

  • Mori T, Sakurai M (1994) Production of anthocyanin from strawberry cell suspension cultures; effects of sugar and nitrogen. J Food Sci 59(3):588–593. doi:10.1111/j.1365-2621.1994.tb05569.x

    Article  CAS  Google Scholar 

  • Mori T, Sakurai M, Shigeta JI, Yoshida K, Kondo T (1993) Formation of anthochyanins from cells cultured from different parts of strawberry plants. J Food Sci 58(4):788–792. doi:10.1111/j.1365-2621.1993.tb09359.x

    Article  CAS  Google Scholar 

  • Mori T, Sakurai M, Seki M, Furusaki S (1994) Use of auxin and cytokinin to regulate anthocyanin production and composition in suspensiion-cultures of strawberry cell. J Sci Food Agric 65(3):271–276. doi:10.1002/jsfa.2740650303

    Article  CAS  Google Scholar 

  • Mukherjee AK, Basu S, Sarkar N, Ghosh AC (2001) Advances in cancer therapy with plant based natural products. Curr Med Chem 8:1467–1486

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Narayan MS, Thimmaraju R, Bhagyalakshmi N (2005) Interplay of growth regulators during solid-state and liquid-state batch cultivation of anthocyanin producing cell line of Daucus carota. Process Biochem 40(1):351–358. doi:10.1016/j.procbio.2004.01.009

    Article  CAS  Google Scholar 

  • Ohmiya A (2000) Effects of auxin on growth and ripening of mesocarp discs of peach fruit. Sci Hortic 84(3–4):309–319. doi:10.1016/s0304-4238(99)00137-5

    Article  CAS  Google Scholar 

  • Ozeki Y, Komamine A (1985) Changes in activities of enzymes involved in general phenylpropanoid metabolism during the induction and reduction of anthocyanin synthesis in a carrot suspension culture as regulated by 2,4-D. Plant Cell Physiol 26(5):903–911

    CAS  Google Scholar 

  • Ozeki Y, Komamine A (1986) Effects of growth regulators on the induction of anthocyanin synthesis in carrot suspension cultures. Plant Cell Physiol 27(7):1361–1368

    CAS  Google Scholar 

  • Ozeki Y, Matsui K, Sakuta M-A, Matsuoka M, Ohashi Y, Kano-Murakami Y, Yamamoto N, Tanaka Y (1990) Differential regulation of phenylalanine ammonia-lyase genes during anthocyanin synthesis and by transfer effect in carrot cell suspension cultures. Physiol Plant 80(3):379–387. doi:10.1111/j.1399-3054.1990.tb00056.x

    Article  CAS  Google Scholar 

  • Ozeki Y, Ito Y, Sasaki N, Oyanagi M, Akimoto H, Chikagawa Y, Takeda J (2000) Phenylalanine ammonia-lyase genes involved in anthocyanin synthesis and the regulation of its expression in suspension cultured carrot cells. J Plant Res 113(1111):319–326. doi:10.1007/pl00013893

    Article  CAS  Google Scholar 

  • Parr AJ (1989) The production of secondary metabolites by plant cell cultures. J Biotechnol 10(1):1–26. doi:10.1016/0168-1656(89)90089-8

    Article  CAS  Google Scholar 

  • Pasquali G, Goddijn OJM, Dewaal A, Verpoorte R, Schilperoort RA, Hoge JHC, Memelink J (1992) Coordinated regulaiton of 2 indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 18(6):1121–1131. doi:10.1007/bf00047715

    Article  CAS  PubMed  Google Scholar 

  • Payne CT, Zhang F, Lloyd A (2000) GL3 Encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156:1349–1362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pool-Zobel BL, Bub A, SchrÃder N, Rechkemmer G (1999) Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells. Eur J Nutr 38(5):227–234

    Article  CAS  PubMed  Google Scholar 

  • Poutrain P, Guirimand G, Glevarec G, Courdavault V, Pichon O (2011) Molecular characterization of an Aux/IAA of Catharanthus roseus. J Plant Growth Regul 30(2):235–241. doi:10.1007/s00344-010-9187-3

    Article  CAS  Google Scholar 

  • Rahman A (2013) Auxin: a regulator of cold stress response. Physiol Plant 147(1):28–35. doi:10.1111/j.1399-3054.2012.01617.x

    Article  CAS  PubMed  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10(2):63–70

    Article  CAS  PubMed  Google Scholar 

  • Rose A, Gläßgen WE, Hopp W, Seitz HU (1996) Purification and characterization of glycosyltransferases involved in anthocyanin biosynthesis in cell-suspension cultures of Daucus carota L. Planta 198(3):397–403

    Article  CAS  PubMed  Google Scholar 

  • Rosen CJ, Roessler JA, Petracek PD, Engelman S, Tong CBS (2009) 2,4-Dichlorophenoxyacetic acid increases peonidin derivatives in red norland periderm. Am J Potato Res 86(1):15–23. doi:10.1007/s12230-008-9055-x

    Article  CAS  Google Scholar 

  • Rowan DD, Cao M, Kui L-W, Cooney JM, Jensen DJ, Austin PT, Hunt MB, Norling C, Hellens RP, Schaffer RJ, Allan AC (2009) Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytol 182(1):102–115

    Article  CAS  PubMed  Google Scholar 

  • Shi M-Z, Xie D-Y (2010) Features of anthocyanin biosynthesis in pap1-D and wild-type Arabidopsis thaliana plants grown in different light intensity and culture media conditions. Planta 231:1385–1400

    Article  CAS  PubMed  Google Scholar 

  • Shi MZ, Xie DY (2011) Engineering of red cells of Arabidopsis thaliana and comparative genome-wide gene expression analysis of red cells versus wild-type cells. Planta 233(4):787–805. doi:10.1007/s00425-010-1335-2

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Imada T, Zhang HL, Tanaka R, Ohno T, Shimomura K (2010) Identification of novel poly-acylated anthocyanins from Gynura bicolor leaves and their antioxidative activity. Food Sci Technol Res 16(5):479–486. doi:10.3136/fstr.16.479

    Article  CAS  Google Scholar 

  • Siah CL, Doran PM (1991) Enhanced codeine and morphine production in suspended Papaver somniferum cultures after removal of exogenous hormones. Plant Cell Rep 10(6–7):349–353

    CAS  PubMed  Google Scholar 

  • Silva FLD, Pascual-Teresa SD, Rivas-Gonzalo J, Santos-Buelga C (2002) Identification of anthocyanin pigments in strawberry (cv Camarosa) by LC using DAD and ESI-MS detection. Eur Food Res Technol 214:248–253

    Article  Google Scholar 

  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140(2):637–646. doi:10.1104/pp.105.072579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spitsberg V, Coscia CJ, Krueger RJ (1981) Characterization of a monoterpene hydroxylase from cell suspension cultures of Catharanthus roseus (L.) G. don. Plant Cell Rep 1:43–47

    Article  CAS  PubMed  Google Scholar 

  • Stern RA, Korchinsky R, Ben-Arie R, Cohen Y (2010) Early application of the synthetic auxin 2,4-DP enhances the red colouration of ‘Cripp’s Pink’ apple. J Horticult Sci Biotechnol 85(1):35–41

    CAS  Google Scholar 

  • Stickland RG, Sunderland N (1972) Photocontrol of growth, and of anthocyanin and chlorogenic acid production in cultured callus tissues of Haplopappus gracilis. Ann Bot 36(4):671–685

    CAS  Google Scholar 

  • St-Pierre B, De Luca V (1995) A cytochrome P-450 monooxygenase catalyzes the first step in the conversion of tabersonine to vindoline in catharanthus roseus. Plant Physiol 109:131–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strader LC, Nemhauser JL (2013) Auxin 2012: a rich mea ho’oulu. Development 140(6):1153–1157. doi:10.1242/dev.090530

    Article  CAS  PubMed  Google Scholar 

  • Timberlake CF, Bridle P (1975) The anthocyanins. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids. Academic Press, New York, San Francisco, pp 214–266

    Chapter  Google Scholar 

  • Tsuda T, Watanabe M, Ohshima K, Norinobu S, Choi SW, Kawakishi S, Osawa T (1994) Antioxidative activity of the anthocyanin pigments cyanidin 3-O-beta-glucoside and cyanidin. J Agric Food Chem 42(11):2407–2410. doi:10.1021/jf00047a009

    Article  CAS  Google Scholar 

  • Wang HB, Race EJ, Shrikhande AJ (2003) Characterization of anthocyanins in grape juices by ion trap liquid chromatography-mass spectrometry. J Agric Food Chem 51(7):1839–1844. doi:10.1021/jf0260747

    Article  CAS  PubMed  Google Scholar 

  • Wellmann E, Hrazdina G, Grisebach H (1976) Induction of anthocyanin formation and of enzymes related to its biosynthesis by UV light in cell cultures of Haplopappus Gracilis. Phytochemistry 15:913–915

    Article  CAS  Google Scholar 

  • Xie D-Y, Shi M-Z (2012) Differentiation of programmed Arabidopsis cells. Bioeng Bugs 3(1):54–59

    Article  PubMed Central  PubMed  Google Scholar 

  • Xie D-Y, Sharma SB, Wright E, Wang Z-Y, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45(6):895–907. doi:10.1111/j.1365-313X.2006.02655.x

    Article  CAS  PubMed  Google Scholar 

  • Yakushiji H, Morinaga K, Kobayashi S (2001) Promotion of berry ripening by 2,3,5-triiodobenzoic acid in ‘Kyoho’ grapes. J Jpn Soc Hortic Sci 70(2):185–190

    Article  CAS  Google Scholar 

  • Yoshida S, Saiga S, Weijers D (2013) Auxin regulation of embryonic root formation. Plant Cell Physiol 54(3):325–332. doi:10.1093/pcp/pcs170

    Article  CAS  PubMed  Google Scholar 

  • Yoshihiro O, Atsushi K (1985) Effects of inoculum density, zeatin and sucrose on anthocyanin accumulation in a carrot suspension culture. Plant Cell Tiss Org Cult 5(1):45–53

    Article  Google Scholar 

  • Yousef GG, Seigler DS, Grusak MA, Rogers RB, Knight CT, Kraft TF, Erdman JWJ, Lila MA (2004) Biosynthesis and characterization of 14C-enriched flavonoid fractions from plant cell suspension cultures. J Agric Food Chem 52(5):1138–1145

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Gonzalez A, Zhao MZ, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130(20):4859–4869. doi:10.1242/dev.00681

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A (2008) The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135(11):1991–1999. doi:10.1242/dev.016873

    Article  CAS  PubMed  Google Scholar 

  • Zhou L-L, Zeng H-N, Shi M-Z, Xie D-Y (2008) Development of tobacco callus cultures over expressing Arabidopsis PAP1/MYB75 transcription factor and characterization of anthocyanin biosynthesis. Planta 229:37–51

    Article  CAS  PubMed  Google Scholar 

  • Zhou LL, Shi MZ, Xie DY (2012) Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana. Planta 236(3):825–837. doi:10.1007/s00425-012-1674-2

    Article  CAS  PubMed  Google Scholar 

  • Zvi MMB, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A (2012) PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol. doi:10.1111/j.1469-8137.2012.04161.x

    Google Scholar 

Download references

Acknowledgments

This investigation was initiated by a grant from the USDA (#: 2006-35318-17431). We are grateful to reviewers for their good comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Yu Xie.

Additional information

Z. Liu and M.-Z. Shi contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2013_2011_MOESM1_ESM.tif

Supplementary Fig. 1 The effects of different concentrations of 2,4-D (a), NAA (b) and IAA (c) on the fresh weight of the calli. The inoculum was 0.3 g/per petri dish. The calli were harvested after 15 days of culture and weighed to get fresh weight. Each bar represents the mean value of the weights from five petri dishes, and the error bars show the standard deviation. (TIFF 719 kb)

425_2013_2011_MOESM2_ESM.tif

Supplementary Fig. 2 Chromatographs recorded at 530 nm show that no peaks corresponding to anthocyanins were detected in the extracts of wild-type calli cultured under the 21 treatment conditions. (TIFF 1060 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Shi, MZ. & Xie, DY. Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins. Planta 239, 765–781 (2014). https://doi.org/10.1007/s00425-013-2011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-2011-0

Keywords

Navigation