Skip to main content
Log in

De novo transcriptome assembly, gene annotation, marker development, and miRNA potential target genes validation under abiotic stresses in Oenanthe javanica

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Oenanthe javanica is an aquatic perennial herb with known medicinal properties and an edible vegetable with high vitamin and mineral content. The understanding of the biology of O. javanica is limited by the absence of information on its genome, transcriptome, and small RNA. In this study, transcriptome sequencing and small RNA sequencing were performed to annotate function genes, develop SSR markers and analyze potential target genes of miRNAs in O. javanica. All reads with total nucleotides number of 1,440,321,408 bp were assembled into 58,072 transcripts and 40,208 unigenes. A total of 1,233 SSRs were identified from O. javanica. Generated unigenes were aligned against seven databases and annotated with functions. A total of 29 potential targets were predicted. Expression of 10 miRNAs and their corresponding target genes under abiotic stresses (heat, cold, salinity, and drought) was validated. All ten miRNAs were confirmed to response to abiotic stresses. A pair of miRNA and its target gene was found. This study can serve as a valuable resource for future studies on O. javanica, which may focus on novel gene discovery, SSR development, gene mapping, and miRNA-affected processes and pathways. This can promote the development of the useful medicinal properties of O. javanica in medical science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A (2010) Manipulation of FASTQ data with Galaxy. Bioinformatics 26:1783–1785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Fu N, Wang Q, Shen HL (2013) De novo assembly, gene annotation and marker development using illumina paired-end transcriptome sequences in celery (Apium graveolens L.). PLoS One 8:e57686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ge A, Shangguan L, Zhang X, Dong Q, Han J, Liu H, Wang X, Fang J (2013) Deep sequencing discovery of novel and conserved microRNAs in strawberry (Fragaria × ananassa). Physiol Plant 148:387–396

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N et al (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gut IG (2013) New sequencing technologies. Clin Transl Oncol 15(11):879–881

    Article  CAS  PubMed  Google Scholar 

  • Han YQ, Huang ZM, Yang XB, Liu HZ, Wu GX (2008) In vivo and in vitro anti-hepatitis B virus activity of total phenolics from Oenanthe javanica. J Ethnopharmacol 118:148–153

    Article  CAS  PubMed  Google Scholar 

  • Hobbs M, Pavasovic A, King AG, Prentis PJ, Eldridge MD, Chen Z, Colgan DJ, Polkinghorne A, Wilkins MR, Flanagan C, Gillett A, Hanger J, Johnson RN, Timms P (2014) A transcriptome resource for the koala (Phascolarctos cinereus): insights into koala retrovirus transcription and sequence diversity. BMC Genomics 15:786

    Article  PubMed Central  PubMed  Google Scholar 

  • Hurley J, Roberts D, Bond A, Keys D, Chen C (2012) Stem-loop RT-qPCR for microRNA expression profiling. Methods Mol Biol 822:33–52

    Article  CAS  PubMed  Google Scholar 

  • Ji G, Yao X, Zang Z, Huang Z (1990) Antiarrhythmic effect of Oenanthe javanica (Bl.) DC. injection. Zhongguo Zhong Yao Za Zhi 15(429–431):448

    Google Scholar 

  • Jiang B, Xie D, Liu W, Peng Q, He X (2013) De novo assembly and characterization of the transcriptome, and development of SSR markers in wax gourd (Benicasa hispida). PLoS One 8:e71054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang Q, Wang F, Li M-Y, Tan H-w, Ma J, Xiong A-S (2014a) High-throughput analysis of small RNAs and characterization of novel microRNAs affected by abiotic stress in a local celery cultivar. Sci Hortic 169:36–43

    Article  CAS  Google Scholar 

  • Jiang Q, Wang F, Li MY, Ma J, Tan GF, Xiong AS (2014b) Selection of suitable reference genes for qPCR normalization under abiotic stresses in Oenanthe javanica (BI.) DC. PLoS One 9:e92262

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiang Q, Xu ZS, Wang F, Li MY, Ma J, Xiong AS (2014c) Effects of abiotic stresses on the expression of Lhcb1 gene and photosynthesis of Oenanthe javanica and Apium graveolens. Biologia Plantarum 58:256–264

    Article  CAS  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JY, Kim KH, Lee YJ, Lee SH, Park JC, Nam DH (2009) Oenanthe javanica extract accelerates ethanol metabolism in ethanol-treated animals. BMB Rep 42:482–485

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Lee DE, Lee KW, Son JE, Seo SK, Li J, Jung SK, Heo YS, Mottamal M, Bode AM, Dong Z, Lee HJ (2011) Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3-K. Cancer Prev Res (Phila) 4:582–591

    Article  CAS  Google Scholar 

  • Kodama Y, Shumway M, Leinonen R (2012) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40:D54–D56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ku SK, Han MS, Bae JS (2013a) Down-regulation of endothelial protein C receptor shedding by persicarin and isorhamnetin-3-O-galactoside. Thromb Res 132:e58–e63

    Article  CAS  PubMed  Google Scholar 

  • Ku SK, Kim TH, Lee S, Kim SM, Bae JS (2013b) Antithrombotic and profibrinolytic activities of isorhamnetin-3-O-galactoside and hyperoside. Food Chem Toxicol 53:197–204

    Article  CAS  PubMed  Google Scholar 

  • Li C, Xiong Q, Zhang J, Ge F, Bi LJ (2012a) Quantitative proteomic strategies for the identification of microRNA targets. Expert Rev Proteomics 9:549–559

    Article  CAS  PubMed  Google Scholar 

  • Li JW, Zhou SS, Huang F (2012b) Microsatellite markers and their application in genetic diversity research of Plasmodium spp. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 24(232–234):238

    Google Scholar 

  • Li D, Wang L, Liu X, Cui D, Chen T, Zhang H, Jiang C, Xu C, Li P, Li S (2013a) Deep sequencing of maize small RNAs reveals a diverse set of microRNA in dry and imbibed seeds. PLoS One 8:e55107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F, Raikhel N, Jiang L, Chen X (2013b) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:562–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li MY, Wang F, Jiang Q, Ma J, Xiong AS (2014) Identification of SSRs and differentially expressed genes in two cultivars of celery (Apium graveolens L.) by deep transcriptome sequencing. Hortic Res 1:10

  • Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364

    PubMed Central  PubMed  Google Scholar 

  • Liu N, Yang J, Guo S, Xu Y, Zhang M (2013) Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing. PLoS One 8:e57359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu XY, Huang XL (2008) Plant miRNAs and abiotic stress responses. Biochem Biophys Res Commun 368:458–462

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in populus. Plant J 55:131–151

    Article  CAS  PubMed  Google Scholar 

  • Ma G, Yang C, Qu Y, Wei H, Zhang T, Zhang N (2007) The flavonoid component isorhamnetin in vitro inhibits proliferation and induces apoptosis in Eca-109 cells. Chem Biol Interact 167:153–160

    Article  CAS  PubMed  Google Scholar 

  • Ma CJ, Lee KY, Jeong EJ, Kim SH, Park J, Choi YH, Kim YC, Sung SH (2010) Persicarin from water dropwort (Oenanthe javanica) protects primary cultured rat cortical cells from glutamate-induced neurotoxicity. Phytother Res 24:913–918

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D et al (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    Article  PubMed Central  PubMed  Google Scholar 

  • Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31:349–360

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ranjan A, Nigam D, Asif MH, Singh R, Ranjan S, Mantri S, Pandey N, Trivedi I, Rai KM, Jena SN, Koul B, Tuli R, Pathre UV, Sawant SV (2012) Genome wide expression profiling of two accession of G. herbaceum L. in response to drought. BMC Genom 13:94

    Article  CAS  Google Scholar 

  • Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Shamimuzzaman M, Vodkin L (2012) Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genom 13:310

    Article  CAS  Google Scholar 

  • Song C, Fang J, Wang C, Guo L, Nicholas KK, Ma Z (2010) MiR-RACE, a new efficient approach to determine the precise sequences of computationally identified trifoliate orange (Poncirus trifoliata) microRNAs. PLoS One 5:e10861

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun X, Korir NK, Han J, Shangguan LF, Kayesh E, Leng XP, Fang JG (2012) Characterization of grapevine microR164 and its target genes. Mol Biol Rep 39:9463–9472

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Zhang Y, Zhu X, Korir NK, Tao R, Wang C, Fang J (2014) Advances in identification and validation of plant microRNAs and their target genes. Physiol Plant 152(2):203–218

    Article  CAS  PubMed  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4:41

    Article  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    CAS  PubMed  Google Scholar 

  • Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genom 11:726

    Article  CAS  Google Scholar 

  • Wang C, Han J, Korir NK, Wang X, Liu H, Li X, Leng X, Fang J (2013) Characterization of target mRNAs for grapevine microRNAs with an integrated strategy of modified RLM-RACE, newly developed PPM-RACE and qPCRs. J Plant Physiol 170:943–957

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L (2013) Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J Exp Bot 64:4271–4287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Ishizuka Y, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2004) A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J Mol Biol 337:49–63

    Article  CAS  PubMed  Google Scholar 

  • Yang XB, Huang ZM, Cao WB, Zheng M, Chen HY, Zhang JZ (2000) Antidiabetic effect of Oenanthe javanica flavone. Acta Pharmacol Sin 21:239–242

    PubMed  Google Scholar 

  • Yang L, Wu G, Poethig RS (2012) Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc Natl Acad Sci USA 109:315–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208

    Article  CAS  PubMed  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genom 13:90

    Article  CAS  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (31272175), New Century Excellent Talents in University (NCET-11-0670), Jiangsu Natural Science Foundation (BK20130027), Priority Academic Program Development of Jiangsu Higher Education Institutions, and Jiangsu Shuangchuang Project.

Conflict of interest

The author has no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Sheng Xiong.

Additional information

Communicated by A. K. Tyagi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 490 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Wang, F., Tan, HW. et al. De novo transcriptome assembly, gene annotation, marker development, and miRNA potential target genes validation under abiotic stresses in Oenanthe javanica . Mol Genet Genomics 290, 671–683 (2015). https://doi.org/10.1007/s00438-014-0953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0953-y

Keywords

Navigation