Skip to main content
Log in

Characterization of grapevine microR164 and its target genes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are an extensive class of newly identified small RNAs that regulate gene expression at post-transcription level by mRNA cleavage or translation. In our study, we used qRT-PCR and found that Vv-miR164 is expression in grapevine leaves, stems, tendrils, inflorescences, flowers and fruits. In addition, two potential target genes for Vv-miR164 were also found and verified by PPM-RACE and RLM-RACE. The results not only maps the cleavage site of the target mRNA but allowed for detection the expression pattern of cleaved fragments that can indicate the regulatory function of this miRNA on its target genes. These target genes were explored by qRT-PCR where some exhibited different expression patterns from their corresponding miRNA, indicating the cleavage mode of the miRNA on its target genes. The efficient and powerful approach used in this study can help in further understanding of how miRNAs cleaved their target mRNAs. Results from this study prove the importance of Vv-miR164 in regulating development and growth of grapes, and adds to the existing knowledge of small RNA-mediated regulation in grapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460

    Article  PubMed  CAS  Google Scholar 

  2. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    PubMed  CAS  Google Scholar 

  3. Zhang BH, Pan XP, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  PubMed  CAS  Google Scholar 

  4. Anwesha N, Thomas J (2010) Chapter twelve-sculpting the flower; the role of microRNAs in flower development. Curr Top Dev Biol 91:349–378

    Article  Google Scholar 

  5. Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  PubMed  CAS  Google Scholar 

  6. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  7. Leung AKL, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40:205–215

    Article  PubMed  CAS  Google Scholar 

  8. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  PubMed  CAS  Google Scholar 

  9. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  10. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAS on the plant transcriptome. Dev Cell 8:517–527

    Article  PubMed  CAS  Google Scholar 

  11. Sun GL (2010) MicroRNAs and their diverse functions in plants. Plant Mol Biol, 10.1007/s11103-011-9817-6

  12. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurns B, Gouyvenoux M, Ugarte E, Cattonaro G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  13. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battolana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326

    Article  PubMed  Google Scholar 

  14. Mica E, Piccolo V, Delledonne M, Ferrarini A, Pezzotti M, Casati C, Fabbro CD, Valle G, Policriti A, Morgate M, Pesole G, Pe ME, Horner DS (2009) High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC Genomics 10:558

    Article  PubMed  Google Scholar 

  15. Carra A, Mica E, Gambino G, Pindo M, Moser C, Pe ME, Schubert A (2009) Cloning and characterization of small non-coding RNAs from grape. Plant J 59:750–763

    Article  PubMed  CAS  Google Scholar 

  16. Wang C, Shangguan LF, Kibet KN, Wang X, Han J, Song CN, Fang JG (2011) Characterization of microRNAs identified in a table grapevine cultivar with validation of computationally predicted grapevine miRNAs by miR-RACE. PLoS One 6:e21259

    Article  PubMed  CAS  Google Scholar 

  17. Guo HS, Xie Q, Fei JF, Chua NH (2005) MircroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  PubMed  CAS  Google Scholar 

  18. Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain target is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  PubMed  CAS  Google Scholar 

  19. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  PubMed  CAS  Google Scholar 

  20. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    Article  PubMed  CAS  Google Scholar 

  21. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  PubMed  CAS  Google Scholar 

  22. Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    Article  PubMed  CAS  Google Scholar 

  23. Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–486

    Article  PubMed  CAS  Google Scholar 

  24. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  PubMed  CAS  Google Scholar 

  25. Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Kim VN, Chua NH, Park CM (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94

    Article  PubMed  CAS  Google Scholar 

  26. Chang SJ, Jepf P, Johne A (1993) Simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  27. Song CN, Fang JG, LE XY, Liu H, Thomas Chao C (2009) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230: 671-685

    Google Scholar 

  28. Fu H, Tie Y, Xu C, Zhang Z, Zhu J, Shi Y, Jiang H, Sun Z, Zheng X (2005) Identification of human fetal liver miRNAs by a novel method. FEBS Lett 579:3849–3854

    Article  PubMed  CAS  Google Scholar 

  29. Song CN, Fang JG, Wang C, Guo L, Nicholas KK, Ma Z (2010) miR-RACE, a new efficient approach to determine the precise sequences of computationally identified trifoliate orange (Poncirus trifoliata) microRNAs. PLoS One 5:e10861

    Article  PubMed  Google Scholar 

  30. Song C, Jia Q, Fang JG, Li F, Wang C, Zhang Z (2010) Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags. Plant Biol 12:927–934

    Article  PubMed  CAS  Google Scholar 

  31. Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65

    Article  PubMed  Google Scholar 

  32. Song CN, Qiang JL, Fang JG, Wang HK, Qiu CL, Zhang Z, Zhang XY (2010) Cloning, subcellular localization and expression analysis of SPL9 and SPL13 genes from Poncirus trifoliate. Sci Agric Sin 43:2105–2114

    CAS  Google Scholar 

  33. Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39:519–525

    Article  PubMed  CAS  Google Scholar 

  34. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  35. Wilson DN, Chung H, Elliott RC, Bremer E, George D, Koh S (2005) Microarray analysis of postictal transcriptional regulation of neuropeptides. J Mol Neurosci 25:285–298

    Article  PubMed  CAS  Google Scholar 

  36. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed  CAS  Google Scholar 

  37. Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50:298–301

    Article  PubMed  CAS  Google Scholar 

  38. Sun X, Shangguang LF, Fang JG, Song CN, Wang C, Mu Q (2011) Bioinformatics analysis of the NAC transcription factor family in grapevine. Genomics Appl Biol 30:229–242

    CAS  Google Scholar 

  39. Sunkar R, Zhu JK (2004) Novel and stress-regulation microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  40. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  41. Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15:303–315

    Article  PubMed  CAS  Google Scholar 

  42. Peaucelle A, Morin H, Traas J, Laufs P (2007) Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis. Development 134:1045–1050

    Article  PubMed  CAS  Google Scholar 

  43. Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in development robustness. Development 134:1051–1060

    Article  PubMed  CAS  Google Scholar 

  44. Chen X (2008) MicroRNA metabolism in plants. Curr Top Microbiol Immunol 320:117–136

    Article  PubMed  CAS  Google Scholar 

  45. German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ (2008) Global identification of mircoRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  PubMed  CAS  Google Scholar 

  46. Mallory AC, Bouche N (2008) MicroRNA-directed regulation: to cleave or not to cleave. Trends Plant Sci 13:359–367

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the NCET Program of China (Grant No. NCET-08-0796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Gui Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Korir, N.K., Han, J. et al. Characterization of grapevine microR164 and its target genes. Mol Biol Rep 39, 9463–9472 (2012). https://doi.org/10.1007/s11033-012-1811-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1811-9

Keywords

Navigation