Skip to main content
Log in

Transposition behavior of nonautonomous a hAT superfamily transposon nDart in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) have a significant impact on the evolution of gene function and genome structures. An endogenous nonautonomous transposable element nDart was discovered in an albino mutant that had an insertion in the Mg-protoporphyrin IX methyltransferase gene in rice. In this study, we elucidated the transposition behavior of nDart, the frequency of nDart transposition and characterized the footprint of nDart. Novel independent nDart insertions in backcrossed progenies were detected by DNA blotting analysis. In addition, germinal excision of nDart occurred at very low frequency compared with that of somatic excision, 0–13.3%, in the nDart1-4(3-2) and nDart1-A loci by a locus-specific PCR strategy. A total of 253 clones from somatic excision at five nDart loci in 10 varieties were determined. nDart rarely caused deletions beyond target site duplication (TSD). The footprint of nDart contained few transversions of nucleotides flanking to both sides of the TSD. The predominant footprint of nDart was an 8-bp addition. Precise excision of nDart was detected at a rate of only 2.2%, which occurred at two loci among the five loci examined. Furthermore, the results in this study revealed that a highly conserved mechanism of transposition is involved between maize Ac/Ds and rice Dart/nDart, which are two-component transposon systems of the hAT superfamily transposons in plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bai L, Singh M, Pitt L, Sweeney M, Brutnell TP (2007) Generating novel allelic variation through Activator insertional mutagenesis in maize. Genetics 175:981–992

    Article  PubMed  CAS  Google Scholar 

  • Baran G, Echt C, Bureau T, Wessler S (1992) Molecular analysis of the maize wx-B3 allele indicates that precise excision of the transposable Ac element is rare. Genetics 130:377–384

    PubMed  CAS  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  PubMed  CAS  Google Scholar 

  • Brutnell TP, Dellaporta SL (1994) Somatic inactivation and reactivation of Ac associated with changes in cytosine methylation and transposase expression. Genetics 138:213–225

    PubMed  CAS  Google Scholar 

  • Brutnell TP, May BP, Dellaporta SL (1997) The Ac-st2 element of maize exhibits a positive dosage effect and epigenetic regulation. Genetics 147:823–834

    PubMed  CAS  Google Scholar 

  • Chen J, Greenblatt IM, Dellaporta SL (1987) Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics 117:109–116

    PubMed  CAS  Google Scholar 

  • Conrad LJ, Brutnell TP (2005) Ac-immobilized, a stable source of Activator transposase that mediates sporophytic and gametophytic excision of Dissociation elements in maize. Genetics 171:1999–2012

    Article  PubMed  CAS  Google Scholar 

  • Courage-Tebbe U, Doring HP, Fedoroff N, Starlinger P (1983) The controlling element Ds at the Shrunken locus in Zea mays: Structure of the unstable sh-m5933 allele and several revertants. Cell 34:383–393

    Article  PubMed  CAS  Google Scholar 

  • Dooner HK, Belachew A (1989) Transposition pattern of the maize element Ac from the Bz-M2(ac) allele. Genetics 122:447–457

    PubMed  CAS  Google Scholar 

  • Ebana K, Kojima Y, Fukuoka S, Nagamine T, Kawase M (2008) Development of mini core collection of Japanese rice landrace. Breed Sci 58:281–291

    Article  Google Scholar 

  • Eisses JF, Lafoe D, Scott LA, Weil CF (1997) Novel, developmentally specific control of Ds transposition in maize. Mol Gen Genet 256:158–168

    Article  PubMed  CAS  Google Scholar 

  • Elrouby N, Bureau TE (2000) Molecular characterization of the Abp1 5’-flanking region in maize and the teosintes. Plant Physiol 124:369–377

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Sekiguchi H (2005) Identification of QTLs conferring genetic variation for heading date among rice varieties at the northern-limit of rice cultivation. Breed Sci 55:141–146

    Article  CAS  Google Scholar 

  • Fujino K, Sekiguchi H (2008) Site specific cytosine methylation in rice nonautonomous transposable element nDart. Plant Mol Biol 67:511–518

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M (2004) Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet 108:794–799

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Sekiguchi H, Kiguchi T (2005) Identification of an active transposon in intact rice plants. Mol Genet Genomics 273:150–157

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Matsuda Y, Sekiguchi H (2009) Transcriptional activity of rice autonomous transposable element Dart. J Plant Physiol 166:1537–1543

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Wu J, Sekiguchi H, Ito T, Izawa T, Matsumoto T (2010) Multiple introgression events surrounding the Hd1 flowering-time gene in cultivated rice, Oryza sativa L. Mol Genet Genomics 284:137–146

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Lu G, Zhao Q, Liu X, Han B (2008) Genome-wide analysis of transposon insertion polymorphisms reveals intraspecific variation in cultivated rice. Plant Physiol 148:25–40

    Article  PubMed  CAS  Google Scholar 

  • Iwata N, Shinada H, Kiuchi H, Sato T, Fujino K (2010) Mapping of QTLs controlling seedling establishment using a direct seeding method in rice. Breed Sci 60:353–360

    Article  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA 94:7704–7711

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99

    Article  PubMed  Google Scholar 

  • Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170

    Article  PubMed  CAS  Google Scholar 

  • Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M (2005) Development of an RFLP-based rice diversity research set of germplasm. Breed Sci 55:431–440

    Article  CAS  Google Scholar 

  • Komatsu M, Shimamoto K, Kyozuka J (2003) Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15:1934–1944

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Alleman M, Wessler SR (1996) A Ds insertion alters the nuclear localization of the maize transcriptional activator R. Proc Natl Acad Sci USA 93:7816–7820

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wang L, Kermicle JL, Wessler SR (1998) Molecular consequences of Ds insertion into and excision from the helix-loop-helix domain of the maize R gene. Genetics 150:1639–1648

    PubMed  CAS  Google Scholar 

  • Moon S, Jung KH, Lee De, Jiang WZ, Koh HJ et al (2006) Identification of active transposon dTok, a member of the hAT family, in rice. Plant Cell Physiol 47:1473–1483

    Article  PubMed  CAS  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M et al (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M, Walbot V (1995) Estimating allelic diversity generated by excision of different transposon types. Theor Appl Genet 90:771–775

    Article  CAS  Google Scholar 

  • Pohlman RF, Fedoroff NV, Messing J (1984) The nucleotide sequence of the maize controlling element Activator. Cell 37:635–643

    Article  PubMed  CAS  Google Scholar 

  • InternationalRiceGenomeSequencingProject (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Rinehart TA, Dean C, Weil CF (1997) Comparative analysis of non-random DNA repair following Ac transposon excision in maize and Arabidopsis. Plant J 12:1419–1427

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Sommer Z, Gierl A, Cuypers H, Peterson PA, Saedler H (1985) Plant transposable elements generate the DNA sequence diversity needed in evolution. EMBO J 4:591–597

    PubMed  CAS  Google Scholar 

  • Scott L, LaFoe D, Weil CF (1996) Adjacent sequences influence DNA repair accompanying transposon excision in maize. Genetics 142:237–246

    PubMed  CAS  Google Scholar 

  • Singh M, Lewis PE, Hardeman K, Bai L, Rose JK, Mazourek M, Chomet P, Brutnell TP (2003) Activator mutagenesis of the pink scutellum1/viviparous7 locus of maize. Plant Cell 15:874–884

    Article  PubMed  CAS  Google Scholar 

  • Sullivan TD, Schiefelbein JW, Nelson OE (1989) Tissue-specific effects of maize bronze gene promoter mutations induced by Ds1 insertion and excisin. Dev Genet 10:412–424

    Article  PubMed  CAS  Google Scholar 

  • Sutton WD, Gerlach WL, Peacock WJ, Schwartz D (1984) Molecular analysis of Ds controlling element mutations at the adh1 locus of maize. Science 223:1265–1268

    Article  PubMed  CAS  Google Scholar 

  • Takagi K, Maekawa M, Tsugane K, Iida S (2010) Transposition and target preferences of an active nonautonomous DNA transposon nDart1 and its relatives belonging to the hAT superfamily in rice. Mol Genet Genomics 284:343–355

    Article  PubMed  CAS  Google Scholar 

  • Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun CH, Iida S (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45:46–57

    Article  PubMed  CAS  Google Scholar 

  • Weck E, Courage U, Döring HP, Fedoroff N, Starlinger P (1984) Analysis of sh-m6233, a mutation induced by the transposable element Ds in the sucrose synthase gene of Zea mays. EMBO J 3:1713–1716

    PubMed  CAS  Google Scholar 

  • Weil CF, Marillonnet S, Burr B, Wessler SR (1992) Changes in state of the Wx-m5 allele of maize are due to intragenic transposition of Ds. Genetics 130:175–185

    PubMed  CAS  Google Scholar 

  • Wessler SR, Baran G, Varagona M, Dellaporta SL (1986) Excision of Ds produces waxy proteins with a range of enzymatic activities. EMBO J 5:2427–2432

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Fujino.

Additional information

Communicated by R. Hagemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 2467 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujino, K., Sekiguchi, H. Transposition behavior of nonautonomous a hAT superfamily transposon nDart in rice (Oryza sativa L.). Mol Genet Genomics 286, 135–142 (2011). https://doi.org/10.1007/s00438-011-0633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-011-0633-0

Keywords

Navigation