Skip to main content
Log in

Genetic architecture of body weight, condition factor and age of sexual maturation in Icelandic Arctic charr (Salvelinus alpinus)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The high commercial value from the aquaculture of salmonid fishes has prompted many studies into the genetic architecture of complex traits and the need to identify genomic regions that have repeatable associations with trait variation both within and among species. We searched for quantitative trait loci (QTL) for body weight (BW), condition factor (CF) and age of sexual maturation (MAT) in families of Arctic charr (Salvelinus alpinus) from an Icelandic breeding program. QTL with genome-wide significance were detected for each trait on multiple Arctic charr (AC) linkage groups (BW: AC-4, AC-20; CF: AC-7, AC-20, AC-23, AC-36; MAT: AC-13/34, AC-39). In addition to the genome-wide significant QTL for both BW and CF on AC-20, linkage groups AC-4, AC-7, AC-8, and AC-16 contain QTL for both BW and CF with chromosome-wide significance. These regions had effects (albeit weaker) on MAT with the exception of the region on AC-8. Comparisons with a North American cultured strain of Arctic charr, as well as North American populations of Atlantic salmon (Salmo salar), and rainbow trout (Oncorhynchus mykiss), reveal some conservation in QTL location and structure, particularly with respect to the joint associations of QTL influencing BW and CF. The detection of some differences in genetic architecture between the two aquaculture strains of Arctic charr may be reflective of the differential evolutionary histories experienced by these fishes, and illustrates the importance of including different strains to investigate genetic variation in a species where the intent is to use that variation in selective breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abasht B, Dekkers JCM, Lamont SJ (2006) Review of quantitative trait loci identified in the chicken. Poult Sci 85:2079–2096

    PubMed  CAS  Google Scholar 

  • Adams CE, Huntingford FA (1997) Growth, maturation and reproductive investment in Arctic charr. J Fish Biol 51:750–759

    Article  Google Scholar 

  • Allendorf F, Thorgaard G (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner J (ed) Evolutionary genetics of fishes. Plenum Press Corporation, New York, pp 1–53

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57(1):289–300

    Google Scholar 

  • Boden J, Kennaway DJ (2006) Circadian rhythms and reproduction. Reproduction 132:379–392

    Article  PubMed  CAS  Google Scholar 

  • Brunner PC, Douglas MR, Osinov A, Wilson C, Bernatchez L (2001) Holarctic phylogeography of Arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution 55(3):573–586

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  • Buske B, Sternstein I, Brockmann G (2006) QTL and candidate genes for fecundity in sows. Anim Reprod Sci 95:167–183

    Article  PubMed  CAS  Google Scholar 

  • Danzmann RG, Gharbi K (2001) Gene mapping in fishes: a means to an end. Genetica 111:3–23

    Article  PubMed  CAS  Google Scholar 

  • Danzmann RG, Ihssen PE (1995) A phylogeographic survey of brook charr (Salvelinus fontinalis) in Algonquin Park, Ontario based upon mitochondrial DNA variation. Mol Ecol 4:681–697

    Article  PubMed  CAS  Google Scholar 

  • Danzmann RG, Cairney M, Davidson WS, Ferguson MM, Gharbi K, Guyomard R, Holm LE, Leder E, Okamoto N, Ozaki A, Rexroad CE, Sakamoto T, Taggart J, Woram RA (2005) A comparative analysis of the rainbow trout genome with 2 other species of fish (Arctic charr and Atlantic salmon) within the tetraploid derivative Salmonidae family (subfamily : Salmoninae). Genome 48:1037–1051

    Article  PubMed  CAS  Google Scholar 

  • Danzmann RG, Davidson EA, Ferguson MM, Gharbi K, Koop BF, Hoyheim B, Lien S, Lubieniecki KP, Moghadam HK, Park J, Phillips RB, Davidson WS (2008) Distribution of ancestral proto-actinopterygian chromosome arms within the genomes of 4R-derivative salmonid fishes (Rainbow trout and Atlantic salmon). BMC Genomics 9:557

    Article  PubMed  Google Scholar 

  • Easton A, Moghadam HK, Danzmann RG, Ferguson MM (2011) The genetic architecture of embryonic developmental rate and genetic covariation with age at maturation in rainbow trout (Oncorhynchus mykiss). J Fish Biol 78:602–623

    Article  PubMed  CAS  Google Scholar 

  • Fishback AG, Danzmann RG, Ferguson MM, Gibson JP (2002) Estimates of genetic parameters and genotype by environment interactions for growth traits of rainbow trout (Oncorhynchus mykiss) as inferred using molecular pedigrees. Aquaculture 206:137–150

    Article  Google Scholar 

  • Fraser D, Huntingford FA, Adams CE (2008) Foraging specialisms, prey size and life-history patterns: a test of predictions using sympatric polymorphic Arctic charr (Salvelinus alpinus). Ecol Freshw Fish 17:1–9

    Article  Google Scholar 

  • Gharbi K, Gautier A, Danzmann RG, Gharbi S, Sakamoto T, Høyheim B, Taggart JB, Cairney M, Powell R, Krieg Okamoto FN, Ferguson MM, Holm LE, Guyomard R (2006) A linkage map for brown trout (Salmo trutta): Chromosome homeologies and comparative genome organization with other salmonid fish. Genetics 172:2405–2419

    Article  PubMed  CAS  Google Scholar 

  • Gharbi K, Coulibaly I, Rexroad CE, Moghadam HK, Leder EH, Siemon H, Davidson WS, Guyomard R, Ferguson MM, Danzmann RG (2007) Comparative maps of salmonid genomes: an update. Aquaculture 272:S260–S261

    Article  Google Scholar 

  • Gilbey J, Verspoor E, McLay A, Houlihan D (2004) A microsatellite linkage map for Atlantic salmon (Salmo salar). Anim Genet 35:98–105

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM, Peichel CL (2010) Are homologies in vertebrate sex determination due to shared ancestry or to limited options? Genome Biol 11:205

    Article  Google Scholar 

  • Haidle L, Janssen JE, Gharbi K, Moghadam HK, Ferguson MM, Danzmann RG (2008) Determination of quantitative trait loci (QTL) for early maturation in rainbow trout (Oncorhynchus mykiss). Mar Biotechnol (NY) 10:579–592

    Article  CAS  Google Scholar 

  • Hocking PM (2005) Review of QTL mapping results in chickens. Worlds Poult Sci J 61:215–226

    Article  Google Scholar 

  • Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136:303–310

    Article  PubMed  Google Scholar 

  • Jobling M, Tveiten H, Hatlen B (1998) Cultivation of Arctic charr: an update. Aquacult Int 6:181–196

    Article  Google Scholar 

  • Johnson L (1980) The Arctic char salvelinus alpinus. In: Balon EK (ed) Perspectives in vertebrate science, Vol 1. Charrs: salmonid fishes of the genus Salvelinus. The Hague, Netherlands, pp 15–98

  • Jonsson B, Jonsson N (1993) Partial migration—niche shift versus sexual maturation in fishes. Rev Fish Biol Fish 3:348–365

    Article  Google Scholar 

  • Jonsson B, Jonsson N (2001) Polymorphism and speciation in Arctic charr. J Fish Biol 58:605–638

    Article  Google Scholar 

  • Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661

    Article  Google Scholar 

  • Leder E, Danzmann RG, Ferguson MM (2006) The candidate gene, Clock, localizes to a strong spawning time quantitative trait locus region in rainbow trout. J Hered 97:74–80

    Article  PubMed  CAS  Google Scholar 

  • Leinonen T, O’Hara RB, Cano JM, Merila J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21:1–17

    PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  PubMed  CAS  Google Scholar 

  • Massault C, Bovenhuis H, Haley C, de Koning DJ (2008) QTL mapping design for aquaculture. Aquaculture 285:23–29

    Article  CAS  Google Scholar 

  • McClelland EK, Naish KA (2008) A genetic linkage map for coho salmon (Oncorhynchus kisutch). Anim Genet 39:169–179

    Article  PubMed  CAS  Google Scholar 

  • McClelland EK, Naish KA (2010) Quantitative trait locus analysis of hatch timing, weight, length and growth rate in coho salmon, Oncorhynchus kisutch. Heredity 105:562–573

    Article  PubMed  CAS  Google Scholar 

  • Merila J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903

    Article  Google Scholar 

  • Moen T, Hayes B, Baranski M, Berg PR, Kjoglum S, Koop BF, Davidson WS, Omholt SW, Lien S (2008) A linkage map of the Atlantic salmon (Salmo salar) based on EST-derived SNP markers. BMC Genomics 9:223

    Article  PubMed  Google Scholar 

  • Moghadam HK, Ferguson MM, Danzmann RG (2005) Evolution of Hox clusters in Salmonidae: a comparative analysis between Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). J Mol Evol 61:636–649

    Article  PubMed  CAS  Google Scholar 

  • Moghadam HK, Poissant J, Fotherby H, Haidle L, Ferguson MM, Danzmann RG (2007) Quantitative trait loci for body weight, condition factor and age at sexual maturation in Arctic charr (Salvelinus alpinus): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Mol Genet Genomics 277:647–661

    Article  PubMed  CAS  Google Scholar 

  • Nichols KM, Young WP, Danzmann RG, Robison BD, Rexroad C, Noakes M, Phillips RB, Bentzen P, Spies I, Knudsen K, Allendorf FW, Cunningham BM, Brunelli J, Zhang H, Ristow S, Drew R, Brown KH, Wheeler PA, Thorgaard GH (2003) A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Anim Genet 34:102–115

    Article  PubMed  CAS  Google Scholar 

  • Nichols KM, Broman KW, Sundin K, Young JM, Wheeler PA, Thorgaard GH (2007) Quantitative trait loci x maternal cytoplasmic environment interaction for developmental rate in Oncorhynchus mykiss. Genetics 175:335–347

    Article  PubMed  Google Scholar 

  • Nilsson J (1990) Heritability estimates of growth-related traits in Arctic charr (Salvelinus-alpinus). Aquaculture 84:211–217

    Article  Google Scholar 

  • Nilsson J (1992) Genetic parameters of growth and sexual maturity in Arctic char (Salvelinus-alpinus). Aquaculture 106:9–19

    Article  Google Scholar 

  • Nordeng H (1983) Solution to the char problem based on Arctic char (Salvelinus alpinus) in Norway. Can J Fish Aquat Sci 40:1372–1387

    Article  Google Scholar 

  • Paibomesai MI, Moghadam HK, Ferguson MM, Danzmann RG (2010) Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling. BMC Res Notes 3:215

    Article  PubMed  Google Scholar 

  • Perez-Perez JM, Esteve-Bruna D, Micol JL (2010) QTL analysis of leaf architecture. J Plant Res 123:15–23

    Article  PubMed  Google Scholar 

  • Phillips PC (2005) Testing hypotheses regarding the genetics of adaptation. Genetica 123:15–24

    Article  PubMed  Google Scholar 

  • Phillips RB, Rab P (2001) Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev 76:1–25

    Article  PubMed  CAS  Google Scholar 

  • Phillips RB, Keatley KA, Morasch MR, Ventura AB, Lubieniecki KP, Koop BF, Danzmann RG, Davidson WS (2009) Assignment of Atlantic salmon (Salmo salar) linkage groups to specific chromosomes: conservation of large syntenic blocks corresponding to whole chromosome arms in rainbow trout (Oncorhynchus mykiss). BMC Genetics 10:46

    Article  PubMed  Google Scholar 

  • Reid DP, Szanto A, Glebe B, Danzmann RG, Ferguson MM (2005) QTL for body weight and condition factor in Atlantic salmon (Salmo salar): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus alpinus). Heredity 94:166–172

    Article  PubMed  CAS  Google Scholar 

  • Rexroad CE, Palti Y, Gahr SA, Vallejo RL (2008) A second generation genetic map for rainbow trout (Oncorhynchus mykiss). BMC Genetics 9:74

    Article  PubMed  Google Scholar 

  • Rikardsen AH, Elliott JM (2000) Variations in juvenile growth, energy allocation and life-history strategies of two populations of Arctic charr in North Norway. J Fish Biol 56:328–346

    Article  Google Scholar 

  • Rikardsen AH, Thorpe JE, Dempson JB (2004) Modelling the life-history variation of Arctic charr. Ecol Freshw Fish 13:305–311

    Article  Google Scholar 

  • Skúlason S, Antonsson T, Gudbergson G, Malmquist H, Snorrason S (1992) Variability in Icelandic Arctic charr. Icelandic Agric Sci 6:145–153

    Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Series B Stat Methodol 64:479–498

    Article  Google Scholar 

  • Svavarsson E (2007) Árangur í kynbótum á bleikju og næstu skref. In: Fræðaþing landbúnaðarins. Reykjavík, Iceland

  • Svedang H (1990) Genetic basis of life-history variation of dwarf and normal Arctic charr, Salvelinus alpinus (L), in Stora-Rosjon, Central Sweden. J Fish Biol 36:917–932

    Article  Google Scholar 

  • Taggart JB, Hynes RA, Prodohl PA, Ferguson A (1992) A simplified protocol for routine total DNA isolation from salmonid fishes. J Fish Biol 40:963–965

    Article  CAS  Google Scholar 

  • Tallman RF, Saurette F, Thera T (1996) Migration and life history variation in arctic charr, Salvelinus alpinus. Ecoscience 3:33–41

    Google Scholar 

  • Thorpe JE, Mangel M, Metcalfe NB, Huntingford FA (1998) Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L. Evol Ecol 12:581–599

    Article  Google Scholar 

  • Woram RA, McGowan C, Stout JA, Gharbi K, Ferguson MM, Hoyheim B, Davidson EA, Davidson WS, Rexroad C, Danzmann RG (2004) A genetic linkage map for Arctic char (Salvelinus alpinus): evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents. Genome 47:304–315

    Article  PubMed  CAS  Google Scholar 

  • Wringe B, Devlin R, Ferguson MM, Moghadam HK, Sakhrani D, Danzmann RG (2010) Growth-related quantitative trait loci in domestic and wild rainbow trout (Oncorhynchus mykiss). BMC Genet 11:63

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Strategic Projects grant from the Natural Sciences and Engineering Research Council of Canada, funds from Hólar University College, Iceland and a Madame Vigdíis Finnbogadóttir Scholarship. We thank Einar Svavarsson for producing and rearing the experimental fish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moira M. Ferguson.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küttner, E., Moghadam, H.K., Skúlason, S. et al. Genetic architecture of body weight, condition factor and age of sexual maturation in Icelandic Arctic charr (Salvelinus alpinus). Mol Genet Genomics 286, 67–79 (2011). https://doi.org/10.1007/s00438-011-0628-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-011-0628-x

Keywords

Navigation