Skip to main content
Log in

Testing hypotheses regarding the genetics of adaptation

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Many of the hypotheses regarding the genetics of adaptation require that one know specific details about the genetic basis of complex traits, such as the number and effects of the loci involved. Developments in molecular biology have made it possible to create relatively dense maps of markers that can potentially be used to map genes underlying specific traits. However, there are a number of reasons to doubt that such mapping will provide the level of resolution necessary to specifically address many evolutionary questions. Moreover, evolutionary change is built upon the substitution of individual mutations, many of which may now be cosegregating in the same allele. In order for this developing area not to become a mirage that traps the efforts of an entire field, the genetic dissection of adaptive traits should be conducted within a strict hypothesis-testing framework and within systems that promise a reasonable chance of identifying the specific genetic changes of interest. Continuing advances in molecular technology may lead the way here, but some form of genetic testing is likely to be forever required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N.H. Barton M. Turelli (1989) ArticleTitleEvolutionary quantitative genetics: How little do we know Annu. Rev. Genet. 23 337–370 Occurrence Handle2694935 Occurrence Handle1:STN:280:By%2BC2cnitFw%3D

    PubMed  CAS  Google Scholar 

  • Beavis, W.D., 1994. The power and deceit of QTL experiments: lessons from comparative QTL studies, pp. 252–268 in 49th Annual Corn and Sorghum Research Conference, edited by American Seed Trade Association, Washington, DC.

  • W.D. Beavis (1998) QTL analyses: power, precision, and accuracy A.H. Paterson (Eds) Molecular Dissection of Complex Traits CRC Press Boca Raton, FL 145–162

    Google Scholar 

  • B. Bost D. de Vienne F. Hospital L. Moreau C. Dillmann (2001) ArticleTitleGenetic and nongenetic bases for the L-shaped distribution of quantitative trait loci effects Genetics 157 1773–1787 Occurrence Handle11290730 Occurrence Handle1:CAS:528:DC%2BD3MXjsFemtbs%3D

    PubMed  CAS  Google Scholar 

  • D. Botstein N. Risch (2003) ArticleTitleDiscovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease Nat. Genet. 33S 228–237

    Google Scholar 

  • W.E. Castle (1921) ArticleTitleAn improved method of estimating the number of genetic factors concerned in cases of blending inheritance Science 54 223 Occurrence Handle17792870

    PubMed  Google Scholar 

  • B. Charlesworth (1990) ArticleTitleOptimization models, quantitative genetics, and mutation Evolution 44 520–538

    Google Scholar 

  • J.M. Cheverud E.J. Routman D.J. Irschick (1997) ArticleTitlePlieotropic effects of individual gene loci on mandibular morphology Evolution 51 2006–2016

    Google Scholar 

  • J.A. Coyne (1983) ArticleTitleGenetic basis of difference in genital morphology among three sibling species of Drosophila Evolution 37 1101–1118

    Google Scholar 

  • J.F. Crow (1957) ArticleTitleGenetics of insect resistance to chemicals Ann. Rev. Entomol. 2 227–246 Occurrence Handle1:CAS:528:DyaG1cXmvVCktg%3D%3D

    CAS  Google Scholar 

  • E.H. Davidson (2001) Genomic Regulatory Systems: Development and Evolution Academic Press New York

    Google Scholar 

  • J. Doebly A. Stec C. Gustus (1995) ArticleTitleTeosinte branched1 and the origin of mazie: evidence for epistasis and the evolution of dominance Genetics 141 333–346

    Google Scholar 

  • Felsenstein, J., 1977. Multivariate normal genetic models with a finite number of loci, in proceedings of the Second International Conference on Quantitative Genetics, edited by Iowa State University Press, Ames, IA.

  • R.A. Fisher (1918) ArticleTitleThe correlations between relatives on the supposition of Mendelian inheritance Trans. Roy. Soc. Edinb. 52 399–433

    Google Scholar 

  • G. Gibson (2002) ArticleTitleMicroarrays in ecology and evolution: a preview Mol. Ecol. 11 17–24 Occurrence Handle11903901 Occurrence Handle1:CAS:528:DC%2BD38Xht1Wlur4%3D

    PubMed  CAS  Google Scholar 

  • A.M. Glazier J.H. Nadeau T.J. Aitman (2002) ArticleTitleFinding genes that underlie complex traits Science 298 2345–2349 Occurrence Handle10.1126/science.1076641 Occurrence Handle1:CAS:528:DC%2BD38Xps1Sju7Y%3D Occurrence Handle12493905

    Article  CAS  PubMed  Google Scholar 

  • A.J. Greenberg J.R. Moran J.A. Coyne C.I. Wu (2003) ArticleTitleEcological adaptation during incipient speciation revealed by precise gene replacement Science 302 1754–1757 Occurrence Handle14657496 Occurrence Handle1:CAS:528:DC%2BD3sXpsVWnsr4%3D

    PubMed  CAS  Google Scholar 

  • R. Jovelin B.C. Ajie P.C. Phillips (2003) ArticleTitleMolecular evolution and quantitative variation for chemosensory behaviour in the nematode genus Caenorhabditis Mol. Ecol. 12 1325–1337 Occurrence Handle12694294 Occurrence Handle1:CAS:528:DC%2BD3sXktlSqsLY%3D

    PubMed  CAS  Google Scholar 

  • T. Juenger M. Purugganan T.F. Mackay (2000) ArticleTitleQuantitative trait loci for floral morphology in Arabidopsis thaliana Genetics 156 1379–1392 Occurrence Handle1:CAS:528:DC%2BD3cXosFSnt74%3D Occurrence Handle11063709

    CAS  PubMed  Google Scholar 

  • C.H. Kao Z.B. Zeng (2002) ArticleTitleModeling epistasis of quantitative trait loci using Cockerham’s model Genetics 160 1243–1261 Occurrence Handle11901137

    PubMed  Google Scholar 

  • M. Khoury T.H. Beaty B.H. Cohen (1993) Fundamentals of Genetic Epidemiology Oxford University Press New York

    Google Scholar 

  • R. Lande (1976) ArticleTitleNatural selection and random genetic drift in phenotypic evolution Evolution 30 314–334

    Google Scholar 

  • R. Lande (1981) ArticleTitleThe minimum number of genes contributing to quantitative variation between and within populations Genetics 99 544–553

    Google Scholar 

  • Lande, R., 1988. Quantitative genetics and evolutionary theory, pp. 71–84 in Proceeding of the Second International Conference on Quantitative Genetics, edited by Sinauer, Sunderland, Mass.

  • E.S. Lander N.J. Schork (1994) ArticleTitleGenetic dissection of complex traits Science 265 2037–2048 Occurrence Handle1:STN:280:ByuA2sfgtVQ%3D Occurrence Handle8091226

    CAS  PubMed  Google Scholar 

  • C.C. Laurie J.R. True J. Liu J.M. Mercer (1997) ArticleTitleAn introgression analysis of quantitative trait loci that contribute to a morphological difference between Drosophila simulans and D. mauritiana Genetics 145 339–348 Occurrence Handle9071588 Occurrence Handle1:CAS:528:DyaK2sXntVaks7Y%3D

    PubMed  CAS  Google Scholar 

  • C.M. Lebreton P.M. Visscher C.S. Haley A. Semikhodskii S.A. Quarrie (1998) ArticleTitleA nonparametric bootstrap method for testing close linkage vs. pleiotropy of coincident quantitative trait loci Genetics 150 931–943 Occurrence Handle9755221 Occurrence Handle1:CAS:528:DyaK1cXmvVSmu7c%3D

    PubMed  CAS  Google Scholar 

  • J. Leips T.F. Mackay (2000) ArticleTitleQuantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density Genetics 155 1773–1788 Occurrence Handle10924473 Occurrence Handle1:CAS:528:DC%2BD3cXmtFGqu7k%3D

    PubMed  CAS  Google Scholar 

  • R.C. Lewontin (1974) The Genetic Basis of Evolutionary Change Columbia University Press New York

    Google Scholar 

  • R.C. Lewontin (1991) ArticleTitleTwenty-five years ago in Genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone Genetics 128 657–662 Occurrence Handle1916239 Occurrence Handle1:STN:280:By2D3cbhtlc%3D

    PubMed  CAS  Google Scholar 

  • A.D. Long S.L. Mullaney T.F. Mackay C.H. Langley (1996) ArticleTitleGenetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster Genetics 144 1497–1510 Occurrence Handle8978039 Occurrence Handle1:CAS:528:DyaK2sXkslyhuw%3D%3D

    PubMed  CAS  Google Scholar 

  • A.D. Long R.F. Lyman C.H. Langley T.F. Mackay (1998) ArticleTitleTwo sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster Genetics 149 999–1017 Occurrence Handle9611209 Occurrence Handle1:CAS:528:DyaK1cXks1ehtrY%3D

    PubMed  CAS  Google Scholar 

  • A.D. Long R.F. Lyman A.H. Morgan C.H. Langley T.F. Mackay (2000) ArticleTitleBoth naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster Genetics 154 1255–1269 Occurrence Handle10757767 Occurrence Handle1:CAS:528:DC%2BD3cXitVOhs74%3D

    PubMed  CAS  Google Scholar 

  • R.F. Lyman T.F. Mackay (1998) ArticleTitleCandidate quantitative trait loci and naturally occurring phenotypic variation for bristle number in Drosophila melanogaster: the Delta-Hairless gene region Genetics 149 983–998 Occurrence Handle9611208 Occurrence Handle1:CAS:528:DyaK1cXks1ehtrk%3D

    PubMed  CAS  Google Scholar 

  • T.F.C. Mackay C.H. Langley (1990) ArticleTitleMolecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster Nature 348 64–66 Occurrence Handle2122256 Occurrence Handle1:CAS:528:DyaK3MXjvFGkug%3D%3D

    PubMed  CAS  Google Scholar 

  • T.F.C. Mackay (2001a) ArticleTitleQuantitative trait loci in Drosophila Nat. Rev. Genet. 2 11–20 Occurrence Handle1:CAS:528:DC%2BD3MXisVGjs7w%3D

    CAS  Google Scholar 

  • T.F.C. Mackay (2001b) ArticleTitleThe genetic architecture of quantitative traits Annu. Rev. Genet. 35 303–339 Occurrence Handle1:CAS:528:DC%2BD38XlsVKk

    CAS  Google Scholar 

  • M.W. Nachman H.E. Hoekstra S.L. D’Agostino (2003) ArticleTitleThe genetic basis of adaptive melanism in pocket mice Proc. Natl. Acad. Sci. USA 100 5268–5273 Occurrence Handle12704245 Occurrence Handle1:CAS:528:DC%2BD3sXjs1yitro%3D

    PubMed  CAS  Google Scholar 

  • M.A. Noor A.L. Cunningham J.C. Larkin (2001) ArticleTitleConsequences of recombination rate variation on quantitative trait locus mapping studies Simulations based on the Drosophila melanogaster genome Genetics 159 581–588 Occurrence Handle1:CAS:528:DC%2BD3MXot1Srsr4%3D Occurrence Handle11606535

    CAS  PubMed  Google Scholar 

  • M.F. Oleksiak G.A. Churchill D.L. Crawford (2002) ArticleTitleVariation in gene expression within and among natural populations Nat. Genet. 32 261–266 Occurrence Handle12219088 Occurrence Handle1:CAS:528:DC%2BD38XotlaisLo%3D

    PubMed  CAS  Google Scholar 

  • H.A. Orr (1998) ArticleTitleThe population genetics of adaptation: the distribution of factors fixed during adaptive evolution Evolution 52 935–949

    Google Scholar 

  • H.A. Orr (2002) ArticleTitleThe population genetics of adaptation: the adaptation of DNA sequences Evolution 56 1317–1330 Occurrence Handle12206234 Occurrence Handle1:CAS:528:DC%2BD38Xmslyqu7c%3D

    PubMed  CAS  Google Scholar 

  • S.P. Otto C.D. Jones (2000) ArticleTitleDetecting the undetected: estimating the total number of loci underlying a quantitative trait Genetics 156 2093–2107 Occurrence Handle11102398 Occurrence Handle1:STN:280:DC%2BD3M7hsFGktQ%3D%3D

    PubMed  CAS  Google Scholar 

  • E.G. Pasyukova C. Vieira T.F. Mackay (2000) ArticleTitleDeficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster Genetics 156 1129–1146 Occurrence Handle11063689 Occurrence Handle1:CAS:528:DC%2BD3cXosFSnsb4%3D

    PubMed  CAS  Google Scholar 

  • C.L. Peichel K.S. Nereng K.A. Ohgi B.L. Cole P.F. Colosimo C.A. Buerkle D. Schluter D.M. Kingsley (2001) ArticleTitleThe genetic architecture of divergence between threespine stickleback species Nature 414 901–905 Occurrence Handle11780061 Occurrence Handle1:STN:280:DC%2BD38%2Fltlanuw%3D%3D

    PubMed  CAS  Google Scholar 

  • P.C. Phillips (1998) ArticleTitleThe language of gene interaction Genetics 149 1167–1171 Occurrence Handle9649511 Occurrence Handle1:STN:280:DyaK1czhsFSrtw%3D%3D

    PubMed  CAS  Google Scholar 

  • P.C. Phillips (1999) ArticleTitleFrom complex traits to complex alleles Trends Genet. 15 6–8 Occurrence Handle10087924 Occurrence Handle1:CAS:528:DyaK1MXhtVKitLY%3D

    PubMed  CAS  Google Scholar 

  • W.B. Provine (1971) The Origins of Theoretical Population Genetics The University of Chicago Press Chicago

    Google Scholar 

  • D.L. Remington M.C. Ungerer M.D. Purugganan (2001) ArticleTitleMap-based cloning of quantitative trait loci: progress and prospects Genet. Res. 78 213–218 Occurrence Handle10.1017/S0016672301005456 Occurrence Handle11865710 Occurrence Handle1:CAS:528:DC%2BD38XitFOqsLw%3D

    Article  PubMed  CAS  Google Scholar 

  • M.L. Siegal D.L. Hartl (1998) ArticleTitleAn experimental test for lineage-specific position effects on alcohol dehydrogenase (Adh) genes in Drosophila Proc. Natl. Acad. Sci. USA 95 15513–15518 Occurrence Handle9861000 Occurrence Handle1:CAS:528:DyaK1MXhvFaqsg%3D%3D

    PubMed  CAS  Google Scholar 

  • M. Slatkin (1970) ArticleTitleSelection and polygenic characters Proc. Natl. Acad. Sci. USA 66 87–93 Occurrence Handle5273903 Occurrence Handle1:STN:280:CS6D3sjlslE%3D

    PubMed  CAS  Google Scholar 

  • L.F. Stam C.C. Laurie (1996) ArticleTitleMolecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster Genetics 144 1559–1564 Occurrence Handle1:CAS:528:DyaK2sXkslygtg%3D%3D Occurrence Handle8978044

    CAS  PubMed  Google Scholar 

  • L.M. Steinmetz H. Sinha D.R. Richards J.I. Spiegelman P.J. Oefner J.H. McCusker R.W. Davis (2002) ArticleTitleDissecting the architecture of a quantitative trait locus in yeast Nature 416 326–330 Occurrence Handle10.1038/416326a Occurrence Handle1:CAS:528:DC%2BD38XisFSlsLg%3D Occurrence Handle11907579

    Article  CAS  PubMed  Google Scholar 

  • D.L. Stern (2000) ArticleTitleEvolutionary developmental biology and the problem of variation Evolution 54 1079–1091 Occurrence Handle11005278 Occurrence Handle1:CAS:528:DC%2BD3cXntVylt7k%3D

    PubMed  CAS  Google Scholar 

  • The C. elegans Sequencing Consortium, 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012–2018.

  • T.T. Vaughn L.S. Pletscher A. Peripato K. King-Ellison E. Adams C. Erikson J.M. Cheverud (1999) ArticleTitleMapping quantitative trait loci for murine growth: a closer look at genetic architecture Genet. Res. 74 313–22 Occurrence Handle10689807 Occurrence Handle1:CAS:528:DC%2BD3cXhs1Grtbc%3D

    PubMed  CAS  Google Scholar 

  • M.L. Wayne L.M. McIntyre (2002) ArticleTitleCombining mapping and arraying: an approach to candidate gene identification. Proc. Natl. Acad. Sci. USA 99 14903–14906 Occurrence Handle12415114 Occurrence Handle1:CAS:528:DC%2BD38Xpt1yrtLw%3D

    PubMed  CAS  Google Scholar 

  • C Weinig M.C. Ungerer L.A. Dorn N.C. Kane Y. Toyonaga S.S. Halldorsdottir T.F. Mackay M.D. Purugganan J. Schmitt (2002) ArticleTitleNovel loci control variation in reproductive timing in Arabidopsis thaliana in natural environments. Genetics 162 1875–1884 Occurrence Handle12524356 Occurrence Handle1:CAS:528:DC%2BD3sXht1ajs7Y%3D

    PubMed  CAS  Google Scholar 

  • S. Wright (1968) Evolution and the Genetics of Populations Vol. 1. Genetic and Biometric Foundations. University of Chicago Press Chicago

    Google Scholar 

  • Z.B. Zeng D. Houle C.C. Cockerham (1990) ArticleTitleHow Informative is Wright’s estimator of the number of genes affecting a quantitative character Genetics 126 235–247 Occurrence Handle2227383 Occurrence Handle1:STN:280:By6D3s3pt10%3D

    PubMed  CAS  Google Scholar 

  • Z.B. Zeng (1992) ArticleTitleCorrecting the bias of Wright’s estimates of the number of genes affecting a quantitative character: a further improved method Genetics 131 987–1001 Occurrence Handle1325390 Occurrence Handle1:STN:280:By2A1cjltlE%3D

    PubMed  CAS  Google Scholar 

  • Z.B. Zeng J. Liu L.F. Stam C.H. Kao J.M. Mercer C.C. Laurie (2000) ArticleTitleGenetic architecture of a morphological shape difference between two Drosophila species Genetics 154 299–310 Occurrence Handle10628989 Occurrence Handle1:CAS:528:DC%2BD3cXms1Kisw%3D%3D

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, P.C. Testing hypotheses regarding the genetics of adaptation. Genetica 123, 15–24 (2005). https://doi.org/10.1007/s10709-004-2704-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-004-2704-1

Keywords

Navigation