Skip to main content
Log in

Quantitative trait loci for body weight, condition factor and age at sexual maturation in Arctic charr (Salvelinus alpinus): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In salmonid fishes, life-history changes may often be coupled to early individual growth trajectories. We identified quantitative trait loci (QTL) for body weight (BW), condition factor (K) and age at sexual maturation (MT) in two full-sib families of Arctic charr (Salvelinus alpinus) to ascertain if QTL for MT were confounded with BW QTL intervals. Three significant QTL for BW, three QTL for MT and one significant QTL for K were identified. A BW QTL with major effect was localized to linkage group 8 (AC-8) and explained more than 34% of the phenotypic variation. Markers on AC-8 have previously been identified as being associated with variation in fork length and BW in this species. Similarly, a major QTL (PEV = 23%) with an influence on the female MT was localized to AC-23. Some of these regions are homologous to those in the genomes of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar), where similar QTL effects have been detected. Our results also suggest the conservation of MT QTL on the homeologous linkage group pair AC-3/24 in Arctic charr. We further identified chromosomal regions that harbor QTL for multiple traits. In particular, markers on AC-4, -20 and -36 had detectable QTL for all traits studied. Significant MT QTL detected on AC-23, -24, and -27 were autonomous of any BW QTL regions, suggesting that the regulation of MT may be more independent of BW control within this species than in other species of salmonids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams CE, Huntingford FA (1997) Growth, maturation and reproductive investment in Arctic charr. J Fish Biol 51:750–759

    Article  Google Scholar 

  • Agellon LB, Davies SL, Lin CM, Chen TT, Powers DA (1988) Rainbow trout has two genes for growth hormone. Mol Reprod Dev 1:11–17

    Article  PubMed  CAS  Google Scholar 

  • Allendorf FW, Danzmann RG (1997) Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. Genetics 145:1083–1092

    PubMed  CAS  Google Scholar 

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner JB (ed) Evolutionary genetics of fishes. Plenum Press Corp, New York, pp 1–53

    Google Scholar 

  • Björnsson BT (1997) The biology of salmon growth hormone: from daylight to dominance. Fish Physiol Biochem 17:9–24

    Article  Google Scholar 

  • Bohlin T, Sundstrom LF, Johnsson JI, Hojesjo J, Pettersson J (2002) Density-dependent growth in brown trout: effects of introducing wild and hatchery fish. J Anim Ecol 71:683–692

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations (with discussion). J R Stat Soc Ser B 26:211–252

    Google Scholar 

  • Burke JM, Tang S, Knapp SJ, Rieseberg LH (2002) Genetic analysis of sunflower domestication. Genetics 161:1257–1267

    PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Coon SL, Roseboom PH, Baler R, Weller JL, Namboodiri MA, Koonin EV, Klein DC (1995) Pineal serotonin N-acetyltransferase: expression cloning and molecular analysis. Science 270:1681–1683

    Article  PubMed  CAS  Google Scholar 

  • Danzmann RG, Ihssen PE (1995) A phylogeographic survey of brook charr (Salvelinus fontinalis) in Algonquin Park, Ontario based upon mitochondrial DNA variation. Mol Ecol 4:681–697

    PubMed  CAS  Google Scholar 

  • Danzmann RG, Cairney M, Davidson WS, Ferguson MM, Gharbi K, Guyomard R, Holm LE, Leder E, Okamoto N, Ozaki A, Rexroad III CE, Sakamoto T, Taggart JB, Woram RA (2005) A comparative analysis of the rainbow trout genome with 2 other species of fish (Arctic charr and Atlantic salmon) within the tetraploid derivative Salmonidae family (subfamily: Salmoninae). Genome 48:1037–1051

    Article  PubMed  CAS  Google Scholar 

  • Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364

    Article  CAS  Google Scholar 

  • Fishback AG, Danzmann RG, Ferguson MM, Gibson JP (2002) Estimates of genetic parameters and genotype by environment interactions for growth traits of rainbow trout (Oncorhynchus mykiss) as inferred using molecular pedigrees. Aquaculture 206:137–150

    Article  Google Scholar 

  • Fulton T (1902) Rate of growth of seas fishes. Sci Invest Fish Div Scot Rept 20

  • Gharbi K, Ferguson MM, Danzmann RG (2005) Characterization of Na, K-ATPase genes in Atlantic salmon (Salmo salar) and comparative genomic organization with rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics 273:474–483

    Article  PubMed  CAS  Google Scholar 

  • Gharbi K, Gautier A, Danzmann RG, Gharbi S, Sakamoto T, Hoyheim B, Taggart JB, Cairney M, Powell R, Krieg F, Okamoto N, Ferguson MM, Holm LE, Guyomard R (2006) A linkage map for brown trout (Salmo trutta): chromosome homeologies and comparative genome organization with other salmonid fish. Genetics 172:2405–2419

    Article  PubMed  CAS  Google Scholar 

  • Gilbey J, Verspoor E, McLay A, Houlihan D (2004) A microsatellite linkage map for Atlantic salmon (Salmo salar). Anim Genet 35:98–105

    Article  PubMed  CAS  Google Scholar 

  • Hartley SE (1987) The chromosomes of salmonid fishes. Biol Rev 62:197–214

    Article  Google Scholar 

  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Jansen RC, Ooijen JWv, Stam P, Lister C, Dean C (1995) Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet 91:33–37

    Article  CAS  Google Scholar 

  • Janssen J (2006) The identification of chromosomal regions influencing body weight, condition factor, and maturation timing in rainbow trout (Oncorhynchus mykiss). In: Department of Integrative Biology. MSc Thesis, University of Guelph, Guelph

  • Jonsson B, Jonsson N (1993) Partial migration: niche shift versus sexual maturation in fishes. Rev Fish Biol Fish 3:348–365

    Article  Google Scholar 

  • Kause A, Ritola O, Paananen T, Mantysaari E, Eskelinen U (2002) Coupling body weight and its composition: a quantitative genetic analysis in rainbow trout. Aquaculture 211:65–79

    Article  Google Scholar 

  • Kirkpatrick BW, Mengelt A, Schulman N, Martin IC (1998) Identification of quantitative trait loci for prolificacy and growth in mice. Mamm Genome 9:97–102

    Article  PubMed  CAS  Google Scholar 

  • Klemetsen A, Amundsen P-A, Dempson JB, Jonsson B, Jonsson N, O’Connell MF, Mortensen E (2003) Atlantic salmon Salmo salar (L.), brown trout Salmo trutta (L.) and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshwat Fish 12:1–59

    Article  Google Scholar 

  • Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201

    Article  PubMed  CAS  Google Scholar 

  • Leder EH, Danzmann RG, Ferguson MM (2006) The candidate gene, clock, localizes to astrong spawning time quantitative trait locus region in rainbow trout. J Hered 97:74–80

    Article  PubMed  CAS  Google Scholar 

  • Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  PubMed  CAS  Google Scholar 

  • Martyniuk CJ, Perry GML, Mogahadam HK, Ferguson MM, Danzmann RG (2003) The genetic architecture of correlations among growth related traits and male age at maturation in rainbow trout. J Fish Biol 63:746–764

    Article  Google Scholar 

  • McCormick SD, Naiman RJ (1984) Some determinants of maturation in brook trout, Salvelinus fontinalis. Aquaculture 43:269–278

    Article  Google Scholar 

  • Moen T, Hoyheim B, Munck H, Gomez-Raya L (2004) A linkage map of Atlantic salmon (Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes. Anim Genet 35:81–92

    Article  PubMed  CAS  Google Scholar 

  • Moghadam HK, Ferguson MM, Danzmann RG (2005a) Evolution of Hox clusters in Salmonidae: a comparative analysis between Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). J Mol Evol 61:636–649

    Article  CAS  Google Scholar 

  • Moghadam HK, Ferguson MM, Danzmann RG (2005b) Evidence for Hox gene duplication in rainbow trout (Oncorhynchus mykiss): a tetraploid model species. J Mol Evol 61:804–818

    Article  CAS  Google Scholar 

  • Naevdal G (1983) Genetic factors in connection with age at maturation. Aquaculture 33:97–106

    Article  Google Scholar 

  • Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820–828

    Article  PubMed  CAS  Google Scholar 

  • Nichols KM, Young WP, Danzmann RG, Robison BD, Rexroad C, Noakes M, Phillips RB, Bentzen P, Spies I, Knudsen K, Allendorf FW, Cunningham BM, Brunelli J, Zhang H, Ristow S, Drew R, Brown KH, Wheeler PA, Thorgaard GH (2003) A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Anim Genet 34:102–115

    Article  PubMed  CAS  Google Scholar 

  • Nichols KM, Wheeler PA, Thorgaard GH (2004) Quantitative trait loci analyses for meristic traits in Oncorhynchus mykiss. Environ Biol Fishes 69:317–331

    Article  Google Scholar 

  • O’Malley KG, Sakamoto T, Danzmann RG, Ferguson MM (2003) Quantitative trait loci for spawning date and body weight in rainbow trout: testing for conserved effects across ancestrally duplicated chromosomes. J Hered 94:273–284

    Article  PubMed  CAS  Google Scholar 

  • Phillips, Ráb P (2001) Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev Camb Philos Soc 76:1–25

    Article  PubMed  CAS  Google Scholar 

  • Quinton CD, Moghadasi SM, McKay LR, McMillan I (2002) Genetic parameters of body weight, female spawning date, and age at sexual maturation in rainbow trout. In: 7th World congress on genetics applied to livestock production, Montpellier, France

  • Reid DP, Szanto A, Glebe B, Danzmann RG, Ferguson MM (2005) QTL for body weight and condition factor in Atlantic salmon (Salmo salar): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus alpinus). Heredity 94:166–172

    Article  PubMed  CAS  Google Scholar 

  • Rikardsen AH, Thorpe JE, Dempson JB (2004) Modelling the life-history variation of Arctic charr. Ecol Freshwat Fish 13:305–311

    Article  Google Scholar 

  • Robison BD, Wheeler PA, Sundin K, Sikka P, Thorgaard GH (2001) Composite interval mapping reveals a major locus influencing embryonic development rate in rainbow trout (Oncorhynchus mykiss). J Hered 92:16–22

    Article  PubMed  CAS  Google Scholar 

  • Rocha JL, Eisen EJ, Siewerdt F, Van Vleck LD, Pomp D (2004) A large-sample QTL study in mice: III. Reproduction. Mamm Genome 15:878–886

    Article  PubMed  Google Scholar 

  • Rowe DK, Thorpe JE (1990) Suppression of maturation in male Atlantic salmon (Salmo salar L.) parr by reduction in feeding and growth during spring months. Aquaculture 86:291–313

    Article  Google Scholar 

  • Rowe DK, Thorpe JE, Shanks AM (1991) Role of fat stores in the maturation of male Atlantic salmon (Salmo salar) parr. Can J Fish Aquat Sci 48:405–413

    Google Scholar 

  • Sakamoto T, Danzmann RG, Gharbi K, Howard P, Ozaki A, Khoo SK, Woram RA, Okamoto N, Ferguson MM, Holm LE, Guyomard R, Hoyheim B (2000) A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155:1331–1345

    PubMed  CAS  Google Scholar 

  • Schemper M (2003) Predictive accuracy and explained variation. Stat Med 22:2299–2308

    Article  PubMed  Google Scholar 

  • Schemper M, Henderson R (2000) Predictive accuracy and explained variation in Cox regression. Biometrics 56:249–255

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research, 2nd edn. Freeman, San Francisco

    Google Scholar 

  • Somorjai IM (2001) Quantitative trait loci for fitness traits in Arctic charr: conservation in rainbow trout and correlations among traits. In: Department of Integrative Biology. MSc Thesis, University of Guelph, Guelph

  • Somorjai IM, Danzmann RG, Ferguson MM (2003) Distribution of temperature tolerance quantitative trait loci in Arctic charr (Salvelinus alpinus) and inferred homologies in rainbow trout (Oncorhynchus mykiss). Genetics 165:1443–1456

    PubMed  CAS  Google Scholar 

  • Sundin K, Brown KH, Drew RE, Nichols KM, Wheeler PA, Thorgaard GH (2005) Genetic analysis of a development rate QTL in backcrosses of clonal rainbow trout. Aquaculture 247:75–83

    Article  CAS  Google Scholar 

  • Taggart JB, Hynes RA, Prodohl PA, Ferguson A (1992) A simplified protocol for routine total DNA isolation from salmonid fishes. J Fish Biol 40:963–965

    Article  CAS  Google Scholar 

  • Thorpe JE (1994) Reproductive strategies in Atlantic salmon, Salmo salar L. Aquacult Fish Manage 22:77–87

    Google Scholar 

  • Thorpe JE, Metcalfe NB (1998) Is smolting a positive or a negative developmental decision? Aquaculture 168:95–103

    Article  Google Scholar 

  • Thorpe JE, Morgan RIG (1980) Growth-rate and smolting-rate of progeny of male Atlantic salmon parr, Salmo salar L. J Fish Biol 17:451–460

    Article  Google Scholar 

  • Thorpe JE, Morgan RIG, Talbot C, Miles MS (1983) Inheritance of developmental rates in Atlantic salmon Salmo salar L. Aquaculture 33:119–128

    Article  Google Scholar 

  • Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101:1638–1643

    Article  PubMed  CAS  Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Woram RA, Gharbi K, Sakamoto T, Hoyheim B, Holm LE, Naish K, McGowan C, Ferguson MM, Phillips RB, Stein J, Guyomard R, Cairney M, Taggart JB, Powell R, Davidson W, Danzmann RG (2003) Comparative genome analysis of the primary sex-determining locus in salmonid fishes. Genome Res 13:272–280

    Article  PubMed  CAS  Google Scholar 

  • Woram RA, McGowan C, Stout JA, Gharbi K, Ferguson MM, Hoyheim B, Davidson EA, Davidson WS, Rexroad C, Danzmann RG (2004) A genetic linkage map for Arctic charr (Salvelinus alpinus): evidence for higher recombination rates and segregation distortion in hybrid versus pure strainmapping parents. Genome 47:304–315

    Article  PubMed  CAS  Google Scholar 

  • Wright JE Jr., Johnson K, Hollister A, May B (1983) Meiotic models to explain classical linkage, pseudolinkage, and chromosome pairing in tetraploid derivative salmonid genomes. Isozymes Curr Top Biol Med Res 10:239–260

    PubMed  Google Scholar 

  • Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2:702–715

    Article  PubMed  CAS  Google Scholar 

  • Young WP, Wheeler PA, Coryell VH, Keim P, Thorgaard GH (1998) A detailed linkage map of rainbow trout produced using doubled haploids. Genetics 148:839–850

    PubMed  CAS  Google Scholar 

  • Zimdahl H, Kreitler T, Gosele C, Ganten D, Hubner N (2002) Conserved synteny in rat and mouse for a blood pressure QTL on human chromosome 17. Hypertension 39:1050–1052

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Project. We are also grateful to Xia Yue and Jaroslav Fabian for laboratory assistance, and personnel of the Coastal Zones Research Institute and Charlo Fish Hatchery for maintenance and rearing of the experimental families used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy G. Danzmann.

Additional information

Communicated by T. Becker.

Appendix

Appendix

Table 6

Table 6 Linkage group location (based on Woram et al. 2004) and association for 100 polymorphic markers in the two Arctic charr families (i.e., 1 and 3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghadam, H.K., Poissant, J., Fotherby, H. et al. Quantitative trait loci for body weight, condition factor and age at sexual maturation in Arctic charr (Salvelinus alpinus): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Mol Genet Genomics 277, 647–661 (2007). https://doi.org/10.1007/s00438-007-0215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0215-3

Keywords

Navigation