Skip to main content
Log in

Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Cold tolerance at the seedling stage (CTSS) is an important trait affecting stable rice production in temperate climates and areas of high elevation. In this study, 331 single nucleotide polymorphism (SNP) markers were developed and used along with phenotypic evaluation to identify quantitative trait loci (QTLs) associated with CTSS from a mapping population of 184 F2 plants derived from a cold tolerant wild rice, W1943 (Oryza rufipogon), and a sensitive indica cultivar, Guang-lu-ai 4 (GLA4). Three QTLs were detected on chromosomes 3, 10 and 11. A major locus, qCtss11 (QTL for cold tolerance at seedling stage), was located on the long arm of chromosome 11 explaining about 40% of the phenotypic variation. Introduction of the W1943 allele of qCtss11 to the GLA4 genetic background increased CTSS. Based on the phenotypic and genotypic assessment of advanced backcross progenies, qCtss11 was dissected as a single Mendelian factor. A high-resolution genetic map was constructed using 23 markers across the qCtss11 locus. As a result, qCtss11 was fine mapped to a 60-kb candidate region defined by marker AK24 and GP0030 on chromosome 11, in which six genes were annotated. Expression and resequence analyses of the six candidates supported the hypothesis that Os11g0615600 and/or Os11g0615900 are causal gene(s) of the CTSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54:2579–2585

    Article  CAS  PubMed  Google Scholar 

  • Andaya VC, Tai TH (2006) Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet 113:467–475

    Article  CAS  PubMed  Google Scholar 

  • Andaya VC, Tai TH (2007) Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Breed 20:349–358

    Article  CAS  Google Scholar 

  • Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • De Young BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    Article  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M (2004) Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet 108:794–799

    Article  CAS  PubMed  Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2,275 markers using a single F2 population. Genetics 148:479–494

    CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  CAS  PubMed  Google Scholar 

  • Lincoln S, Daly M, Lander ES (1992) Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute technical report, 2nd edn. Massachusetts

  • Lou Q, Chen L, Sun Z, Xing Y, Li J, Xu X, Mei H, Luo L (2007) A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica 158:87–94

    Article  CAS  Google Scholar 

  • Mackill DJ, Lei XM (1997) Genetic variation for traits related to temperate adaptation of rice cultivars. Crop Sci 37:1340–1346

    Google Scholar 

  • Maclean JL, Dawe DC, Hardy B, Hettel GP (2002) Rice almanac: source book for the most important economic activity on earth, 3rd edn. IRRI, Manila, pp 6–8

    Google Scholar 

  • Monna L, Lin X, Kojima S, Sasaki T, Yano M (2002) Genetic dissection of a genomic region for quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104:772–778

    Article  CAS  PubMed  Google Scholar 

  • Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y (2002) Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon)and establishment of SNP markers. DNA Res 9:163–171

    Article  CAS  PubMed  Google Scholar 

  • Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (O. sativa L.). Theor Appl Genet 106:583–593

    CAS  PubMed  Google Scholar 

  • Qian Q, Zeng D, He P, Zheng X, Chen Y, Zhu L (2000) QTL analysis of the rice seedling cold tolerance in a double haploid population derived from anther culture of a hybrid between indica and japonica rice. Chin Sci Bull 45:448–453

    Article  Google Scholar 

  • Sthapit BR, Witcombe JR (1998) Inheritance of tolerance to chilling stress in rice during germination and plumule greening. Crop Sci 38:660–665

    Google Scholar 

  • Takesawa T, Ito M, Kanzaki H, Kameya N, Nakamura I (2002) Over-expression of glutathione S-transferase in transgenic rice enhances germination and growth at low temperature. Mol Breed 9:93–101

    Article  CAS  Google Scholar 

  • Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X, Sun CQ (2006) Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genet 113:619–629

    Article  CAS  PubMed  Google Scholar 

  • van der Biezen EA, Jones JD (1998) The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:R226–R227

    Article  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics. North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Yoshida R, Kanno A, Sato T, Kameya T (1996) Cool temperature-induced chlorosis in rice plants. Plant Physiol 110:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Zenbayashi K, Ashizawa T, Tani T, Koizumi S (2002) Mapping of the QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet 104:547–552

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZH, Su L, Li W, Chen W, Zhu YG (2005) A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice (Oryza sativa L.). Plant Sci 168:527–534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Noel Cogan and Hiroshi Shinozuka for advice and suggestions regarding to prove the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Xuan Wang.

Additional information

Communicated by M. Yano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 66 kb)

Supplementary material 2 (XLS 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koseki, M., Kitazawa, N., Yonebayashi, S. et al. Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol Genet Genomics 284, 45–54 (2010). https://doi.org/10.1007/s00438-010-0548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0548-1

Keywords

Navigation