Skip to main content

Advertisement

Log in

Sequences and gene organization of the mitochondrial genomes of the liver flukes Opisthorchis viverrini and Clonorchis sinensis (Trematoda)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Opisthorchis viverrini and Clonorchis sinensis are important trematodes infecting humans and animals, belonging to the family Opisthorchiidae. In the present study, we sequenced the nearly complete mitochondrial (mt) DNA (mtDNA) sequences of O. viverrini from Laos, obtained the complete mtDNA sequences of C. sinensis from China and Korea, and revealed their gene annotations and genome organizations. The mtDNA sequences of O. viverrini, C. sinensis (China isolate), C. sinensis (Korea isolate) were 13,510, 13,879, and 13,877 bp in size, respectively. Each of the three mt genomes comprises 36 genes, consisting of 12 genes coding for proteins, two genes for rRNA, and 20 genes (O. viverrini) or 22 genes (C. sinensis) for tRNA. The gene content and arrangement are identical to that of Fasciola hepatica, and Paragonimus westermani, but distinct from Schistosoma spp. All genes are transcribed in the same direction and have a nucleotide composition high in T. The contents of A + T of the mt genomes were 59.39% for O. viverrini, 60.03% for C. sinensis (China isolate), and 59.99% for C. sinensis (Korea isolate). Phylogenetic analyses using concatenated amino acid sequences of the 12 protein-coding genes, with three different computational algorithms [maximum parsimony, maximum likelihood, and Bayesian analysis], all revealed distinct groups with high statistical support, indicating that O. viverrini and C. sinensis represent sister taxa. These data provide additional novel mtDNA markers for studying the molecular epidemiology and population genetics of the two liver flukes and should have implications for the molecular diagnosis, prevention, and control of opisthorchiasis and clonorchiasis in humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blair D, Le TH, Després L, McManus DP (1999) Mitochondrial genes of Schistosoma mansoni. Parasitology 119:303–313

    Article  PubMed  CAS  Google Scholar 

  • Boonjaraspinyo S, Boonmars T, Aromdee C, Kaewsamut B (2010) Effect of fingerroot on reducing inflammatory cells in hamster infected with Opisthorchis viverrini and N-nitrosodimethylamine administration. Parasitol Res 106:1485–1489

    Article  PubMed  Google Scholar 

  • Cai XQ, Xu MJ, Wang YH, Qiu DY, Liu GX, Lin A, Tang JD, Zhang RL, Zhu XQ (2010) Sensitive and rapid detection of Clonorchis sinensis infection in fish by loop-mediated isothermal amplification (LAMP). Parasitol Res 106:1379–1383

    Article  PubMed  CAS  Google Scholar 

  • Catanese G, Manchado M, Infante C (2010) Evolutionary relatedness of mackerels of the Catanese genus Scomber based on complete mitochondrial genomes: strong support to the recognition of Atlantic Scomber colias and Pacific Scomber japonicus as distinct species. Gene 452:35–43

    Article  PubMed  CAS  Google Scholar 

  • Chen HX, Sundberg P, Norenburg JL, Sun SC (2009) The complete mitochondrial genome of Cephalothrix simula (Iwata) (Nemertea: Palaeonemertea). Gene 442:8–17

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Xu H, Zhang Z, Zeng S, Gan W, Yu X, Hu X (2011) Cloning and expression of 21.1-kDa tegumental protein of Clonorchis sinensis and human antibody response to it as a trematode-nematode pan-specific serodiagnosis antigen. Parasitol Res 108:161–168

    Article  PubMed  Google Scholar 

  • Elise MK, Tarig H, Thomas R (1998) The mitochondrial genome of Onchocerca volvulus: sequence, structure and phylogenetic analysis. Mol Biochem Parasitol 95:111–127

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hu M, Chilton NB, Gasser RB (2002) The mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda: Secernentea). Int J Parasitol 32:145–158

    Article  PubMed  CAS  Google Scholar 

  • Hu M, Chilton NB, Gasser RB (2003) The mitochondrial genome of Strongyloides stercoralis (Nematoda) idiosyncratic gene order and evolutionary implications. Int J Parasitol 33:1393–1408

    Article  PubMed  CAS  Google Scholar 

  • Kaewkes S (2003) Taxonomy and biology of liver flukes. Acta Trop 88:177–186

    Article  PubMed  Google Scholar 

  • Kang S, Sultana T, Loktev VB, Wongratanacheewin S, Sohn WM, Eom KS, Park JK (2008) Molecular identification and phylogenetic analysis of nuclear rDNA sequences among three opisthorchid liver fluke species (Opisthorchiidae: Trematoda). Parasitol Int 57:191–197

    Article  PubMed  CAS  Google Scholar 

  • Keddie EM, Higazi T, Unnasch TR (1998) The mitochondrial genome of Onchocerca volvulus: sequence, structure and phylogenetic analysis. Mol Biochem Parasitol 95:111–127

    Article  PubMed  CAS  Google Scholar 

  • Kiatsopit N, Sithithaworn P, Sithithaworn J, Boonmars T, Tesana S, Pitaksakulrat O, Saijuntha W, Petney TN, Andrews RH (2011) Genetic relationships within the Opisthorchis viverrini species complex with specific analysis of O. viverrini from Savannakhet, Lao PDR by multilocus enzyme electrophoresis. Parasitol Res 108:211–217

    Article  PubMed  Google Scholar 

  • Kim KH, Eoma KS, Park JK (2006) The complete mitochondrial genome of Anisakis simplex (Ascaridida: Nematoda) and phylogenetic implications. Int J Parasitol 36:319–328

    Article  PubMed  CAS  Google Scholar 

  • Le TH, Blair D, McManus DP (2000) Mitochondrial DNA sequences of human schistosomes: the current status. Int J Parasitol 30:283–290

    Article  PubMed  CAS  Google Scholar 

  • Le TH, Humair PF, Blair D, Agatsuma T, Littlewood DT, McManus DP (2001a) Mitochondrial gene content, arrangement and composition compared in African and Asian schistosomes. Mol Biochem Parasitol 117:61–71

    Article  PubMed  CAS  Google Scholar 

  • Le TH, Blair D, McManus DP (2001b) Complete DNA sequence and gene organization of the mitochondrial genome of the liver fluke, Fasciola hepatica L. (Platyhelminthes; Trematoda). Parasitology 123:609–621

    Article  PubMed  CAS  Google Scholar 

  • Li MW, Lin RQ, Song HQ, Wu XY, Zhu XQ (2008) The complete mitochondrial genomes for three Toxocara species of human and animal health significance. BMC Genomics 9:224

    Article  PubMed  Google Scholar 

  • Littlewood DT, Lockyer AE, Webster BL, Johnston DA, Le TH (2006) The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol Phylogenet Evol 39:452–467

    Article  PubMed  CAS  Google Scholar 

  • Liu GH, Lin RQ, Li MW, Liu W, Liu Y, Yuan ZG, Song HQ, Zhao GH, Zhang KX, Zhu XQ (2011) The complete mitochondrial genomes of three cestode species of Taenia infecting animals and humans. Mol Biol Rep 38:2249–2256

    Article  PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  CAS  Google Scholar 

  • Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ, Yu XB, Fang YY (2005) Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect Dis 5:31–41

    Article  PubMed  Google Scholar 

  • Marcos LA, Terashima A, Gotuzzo E (2008) Update on hepatobiliary flukes: fascioliasis, opisthorchiasis and clonorchiasis. Curr Opin Infect Dis 21:523–530

    Article  PubMed  Google Scholar 

  • Nakao M, Abmed D, Yamasaki H, Ito A (2007) Mitochondrial genomes of the human broad tapeworms Diphyllobothrium latum and Diphyllobothrium nihonkaiense (Cestoda: Diphyllobothriidae). Parasitol Res 101:233–236

    Article  PubMed  Google Scholar 

  • Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DT (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int J Parasitol 33:733–755

    Article  PubMed  CAS  Google Scholar 

  • Pak JH, Moon JH, Hwang SJ, Cho SH, Seo SB, Kim TS (2009) Proteomic analysis of differentially expressed proteins in human cholangiocarcinoma cells treated with Clonorchis sinensis excretory-secretory products. J Cell Biochem 108:1376–1388

    Article  PubMed  CAS  Google Scholar 

  • Park GM (2007) Genetic comparison of liver flukes, Clonorchis sinensis and Opisthorchis viverrini, based on rDNA and mtDNA gene sequences. Parasitol Res 100:351–357

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Shekhovtsov SV, Katokhin AV, Romanov KV, Besprozvannykh VV, Fedorov KP, Yurlova NI, Serbina EA, Sithithaworn P, Kolchanov NA, Mordvinov VA (2009) A novel nuclear marker, Pm-int9, for phylogenetic studies of Opisthorchis felineus, Opisthorchis viverrini, and Clonorchis sinensis (Opisthorchiidae, Trematoda). Parasitol Res 106:293–297

    Article  PubMed  Google Scholar 

  • Shekhovtsov SV, Katokhin AV, Kolchanov NA, Mordvinov VA (2010) The complete mitochondrial genomes of the liver flukes Opisthorchis felineus and Clonorchis sinensis (Trematoda). Parasitol Int 59:100–103

    Article  PubMed  CAS  Google Scholar 

  • Sithithaworn P, Haswell-Elkins M (2003) Epidemiology of Opisthorchis viverrini. Acta Trop 88:187–194

    Article  PubMed  Google Scholar 

  • Soukhathammavong P, Odermatt P, Sayasone S, Vonghachack Y, Vounatsou P, Hatz C, Akkhavong K, Keiser J (2011) Efficacy and safety of mefloquine, artesunate, mefloquine-artesunate, tribendimidine, and praziquantel in patients with Opisthorchis viverrini: a randomised, exploratory, open-label, phase 2 trial. Lancet Infect Dis 11:110–118

    Article  PubMed  CAS  Google Scholar 

  • Sri-Aroon P, Intapan PM, Lohachit C, Phongsasakulchoti P, Thanchomnang T, Lulitanond V, Hiscox A, Phompida S, Sananikhom P, Maleewong W, Brey PT (2011) Molecular evidence of Opisthorchis viverrini in infected bithyniid snails in the Lao People’s Democratic Republic by specific hybridization probe-based real-time fluorescence resonance energy transfer PCR method. Parasitol Res 108:973–978

    Article  PubMed  Google Scholar 

  • Swofford DL (2002) Paup*: phylogenetic analysis using parsimony, version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Webster BL, Rudolfová J, Horák P, Littlewood DT (2007) The complete mitochondrial genome of the bird schistosome Trichobilharzia regenti (Platyhelminthes: Digenea), causative agent of cercarial dermatitis. J Parasitol 93:553–561

    Article  PubMed  CAS  Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA, structure and evolution. Int Rev Cytol 141:173–216

    Article  PubMed  CAS  Google Scholar 

  • Zhao GH, Mo XH, Zou FC, Li J, Weng YB, Lin RQ, Xia CM, Zhu XQ (2009) Genetic variability among Schistosoma japonicum isolates from different endemic regions in China revealed by sequences of three mitochondrial DNA genes. Vet Parasitol 162:67–74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (grant nos. SKLVEB2009KFKT014 and SKLVEB2010KFKT010), and the Yunnan Provincial Program for Introducing High-level Scientists (grant no. 2009CI125). The experiments comply with the current laws of the country in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Q. Lin or X. Q. Zhu.

Additional information

X.Q. Cai and G.H. Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, X.Q., Liu, G.H., Song, H.Q. et al. Sequences and gene organization of the mitochondrial genomes of the liver flukes Opisthorchis viverrini and Clonorchis sinensis (Trematoda). Parasitol Res 110, 235–243 (2012). https://doi.org/10.1007/s00436-011-2477-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2477-2

Keywords

Navigation