Skip to main content
Log in

Immunocytochemistry and metamorphic fate of the larval nervous system of Triphyllozoon mucronatum (Ectoprocta: Gymnolaemata: Cheilostomata)

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The development of gymnolaemate Ectoprocta includes a larval stage of either the coronate or the cyphonautes type. Herein, we provide the first description of the larval neural anatomy of a coronate larva using immunocytochemical methods. We used antibodies against the neurotransmitters serotonin and FMRFamide and followed the fate of immunoreactive cells through metamorphosis. The larval serotonergic nervous system of Triphyllozoon mucronatum consists of an apical commissure, one pair of lateral axons, a coronate nerve net, an internal nerve mesh, and one pair of axons innervating the frontal organ. FMRFamide is only found in the larval commissure and in the lateral axons. The entire serotonergic and FMRFamidergic nervous system is lost during metamorphosis and the adult neural structures form independent of the larval ones. In the postlarval zooid, both neurotransmitters are detected in the cerebral commissure, in cell bodies located at the base of the lophophore, and in neurites connecting these somata to the cerebral commissure. These findings differ significantly from that observed in other lophotrochozoans, where certain larval neural features are either incorporated in the adult nervous system and/or have inductive functions during its ontogeny. The occurrence of a larval commissure and the lack of a serotonergic or FMRFamidergic apical organ in T. mucronatum are unique among lophotrochozoan larvae, which usually have a distinct apical organ containing serotonergic cells. Our data show that the larval neuroanatomy and the processes that underlie the reorganization of larval organ systems during metamorphosis may vary much more among lophotrochozoan taxa than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  PubMed  CAS  Google Scholar 

  • Brusca RC, Brusca GJ (2004) Invertebrates. Sinauer, Sunderland

    Google Scholar 

  • Cohen BL (2000) Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnean classification (the subphylum Phoroniformea nov.). Proc R Soc Lond B 267:225–231

    Article  CAS  Google Scholar 

  • Conway Morris S, Cohen BL, Gawthrop AB, Cavalier-Smith T, Winnepenninckx B (1996) Lophophorate phylogeny. Science 272:282

    Article  PubMed  Google Scholar 

  • De Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776

    Article  PubMed  CAS  Google Scholar 

  • Dickinson AJG, Nason J, Croll RP (1999) Histochemical localization of FMRFamide, serotonin and catecholamines in embryonic Crepidula fornicata (Gastropoda, Prosobranchia). Zoomorphology 119:49–62

    Article  Google Scholar 

  • Freeman G (1991) The bases for and timing of regional specification during larval development in Phoronis. Dev Biol 147:157–173

    Article  PubMed  CAS  Google Scholar 

  • Freeman G (1993) Regional specification during embryogenesis in the articulate brachiopod Terebratalia. Dev Biol 160:196–213

    Article  PubMed  CAS  Google Scholar 

  • Freeman G (1995) Regional specification during embryogenesis in the inarticulate brachiopod Glottidia. Dev Biol 172:15–36

    Article  PubMed  CAS  Google Scholar 

  • Freeman G (1999) Regional specification during embryogenesis in the inarticulate brachiopod Discinisca. Dev Biol 209:321–339

    Article  PubMed  CAS  Google Scholar 

  • Freeman G (2000) Regional specification during embryogenesis in the craniiform brachiopod Crania anomala. Dev Biol 227:219–238

    Article  PubMed  CAS  Google Scholar 

  • Freeman G, Martindale MQ (2002) The origin of mesoderm in phoronids. Dev Biol 252:301–311

    Article  PubMed  CAS  Google Scholar 

  • Friedrich S, Wanninger A, Brückner M, Haszprunar G (2002) Neurogenesis in the mossy chiton, Mopalia muscosa (Gould) (Polyplacophora): evidence against molluscan metamerism. J Morphol 253:109–117

    Article  PubMed  Google Scholar 

  • Giribet G, Distel DL, Polz M, Sterrer W, Wheeler WC (2000) Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst Biol 49:539–562

    Article  PubMed  CAS  Google Scholar 

  • Halanych KM, Bacheller JD, Aguinaldo AMA, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643

    Article  PubMed  CAS  Google Scholar 

  • Hay-Schmidt A (1990a) Catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive cells and processes of the nervous system of the pilidium larva (Nemertini). Zoomorphology 109:231–244

    Article  Google Scholar 

  • Hay-Schmidt A (1990b) Distribution of catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive neurons and processes in the nervous system of the actinotroch larva of Phoronis muelleri (Phoronida). Cell Tissue Res 259:105–118

    Article  Google Scholar 

  • Hay-Schmidt A (1990c) Catecholamine-containing, serotonin-like, and FMRFamide-like immunoreactive neurons and processes in the nervous system of the early actinotroch larva of Phoronis vancouverensis (Phoronida): distribution and development. Can J Zool 68:1525–1536

    Article  CAS  Google Scholar 

  • Hay-Schmidt A (1992) Ultrastructure and immunocytochemistry of the nervous system of the larvae of Lingula anatina and Glottidia sp. (Brachiopoda). Zoomorphology 112:189–205

    Article  Google Scholar 

  • Hay-Schmidt A (2000) The evolution of the serotonergic nervous system. Proc R Soc Lond B 267:1071–1079

    Article  CAS  Google Scholar 

  • Helfenbein KG, Boore JL (2003) The mitochondrial genome of Phoronis architecta—comparisons demonstrate that phoronids are lophotrochozoan protostomes. Mol Biol Evol 21:153–157

    Article  PubMed  CAS  Google Scholar 

  • Herrmann K (1979) Phoronis psammophila Cori (Phoronida, Tentaculata): Larvalentwicklung und Metamorphose. Helgol wiss Meeresunters 32:550–581

    Article  Google Scholar 

  • Herrmann K (1986) Die Ontogenese von Phoronis mülleri (Tentaculata) unter besonderer Berücksichtigung der Mesodermdifferenzierung und Phylogenese des Coeloms. Zool Jb Anat 114:441–463

    Google Scholar 

  • Hessling R (2002) Metameric organisation of the nervous system in developmental stages of Urechis caupo (Echiura) and its phylogenetic implications. Zoomorphology 121:221–234

    Article  Google Scholar 

  • Hessling R, Westheide W (2002) Are Echiura derived from a segmented ancestor? – Immunohistochemical analysis of the nervous system in developmental stages of Bonellia viridis. J Morphol 252:100–113

    Article  PubMed  Google Scholar 

  • Kempf SC, Page LR, Pires A (1997) Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. J Comp Neurol 386:507–528

    Article  PubMed  CAS  Google Scholar 

  • Lüter C (2000) Ultrastructure of larval and adult setae of Brachiopoda. Zool Anz 239:75–90

    Google Scholar 

  • Lüter C, Bartolomaeus T (1997) The phylogenetic position of Brachiopoda—a comparison of morphological and molecular data. Zool Scripta 26:245–253

    Article  Google Scholar 

  • Nielsen C (1971) Entoproct life-cycles and the entoproct/ectoproct relationship. Ophelia 9:209–341

    Google Scholar 

  • Nielsen C (1977) The relationships of Entoprocta, Ectoprocta, and Phoronida. Am Zool 17:149–150

    Google Scholar 

  • Nielsen C (1991) The development of the brachiopod Crania (Neocrania) anomala (O. F. Müller) and its phylogenetic significance. Acta Zool 72:7–28

    Google Scholar 

  • Nielsen C (2001) Animal evolution. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen C (2002) The phylogenetic position of Entoprocta, Ectoprocta, Phoronida, and Brachiopoda. Integr Comp Biol 42:685–691

    Article  Google Scholar 

  • Nielsen C, Scharf N, Eibye-Lacobsen D (1996) Cladistic analysis of the animal kingdom. Biol J Linn Soc 57:385–410

    Article  Google Scholar 

  • Page LR (2002) Apical sensory organ in larvae of the patellogastropod Tectura scutum. Biol Bull 202:6–22

    Article  PubMed  Google Scholar 

  • Passamaneck YJ, Halanych KM (2004) Evidence from Hox genes that bryozoans are lophotrochozoans. Evol Dev 6:275–281

    Article  PubMed  CAS  Google Scholar 

  • Rattenbury JC (1954) The embryology of Phoronopsis viridis. J Morphol 94:289–349 pls 1–8

    Google Scholar 

  • Sørensen MV, Funch P, Willerslev E, Hansen AJ, Olesen J (2000) On the phylogeny of the metazoa in the light of Cycliophora and Micrognathozoa. Zool Anz 239:297–318

    Google Scholar 

  • Santagata S (2002) Structure and metamorphic remodeling of the larval nervous system and musculature of Phoronis pallida (Phoronida). Evol Dev 4:28–42

    Article  PubMed  Google Scholar 

  • Santagata S, Zimmer RL (2002) Comparison of the neuromuscular systems among actinotroch larvae: systematic and evolutionary implications. Evol Dev 4:43–54

    Article  PubMed  Google Scholar 

  • Silén L (1954) Developmental biology of Phoronidea of the Gullmar Fiord area (West Coast of Sweden). Acta Zool 35:215–257

    Article  Google Scholar 

  • Stechmann A, Schlegel M (1999) Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes. Proc R Soc Lond B 266:2043–2052

    Article  CAS  Google Scholar 

  • Temkin MH, Zimmer RL (2002) Phylum Bryozoa. In: Young CM (ed) Atlas of marine invertebrate larvae. Academic, London, pp 411–427

    Google Scholar 

  • Voronezhskaya EE, Tyurin SA, Nezlin LP (2002) Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). J Comp Neurol 444:25–38

    Article  PubMed  Google Scholar 

  • Voronezhskaya EE, Tsitrin EB, Nezlin LP (2003) Neuronal development in larval polychaete Phyllodoce maculata (Phyllodocidae). J Comp Neurol 455:299–309

    Article  PubMed  Google Scholar 

  • Wanninger A (2004) Myo-anatomy of juvenile and adult loxosomatid Entoprocta and the use of muscular body plans for phylogenetic inferences. J Morphol 261:249–257

    Article  PubMed  Google Scholar 

  • Wanninger A, Haszprunar G (2003) The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology 122:77–85

    Google Scholar 

  • Wanninger A, Koop D, Bromham L, Noonan E, Degnan BM (2005) Nervous and muscle system development in Phascolion strombus (Sipuncula). Dev Genes Evol (in press)

  • Willmer P (1990) Invertebrate relationships. Patterns in animal evolution. Cambridge University Press, New York

    Google Scholar 

  • Zimmer RL (1980) Mesoderm proliferation and formation of the protocoel and metacoel in early embryos of Phoronis vancouverensis (Phoronida). Zool Jb Anat 103:219–233

    Google Scholar 

  • Zimmer RL, Woollacott RM (1977a) Structure and classification of gymnolaemate larvae. In: Woollacott RM, Zimmer RL (eds) Biology of Bryozoans. Academic, New York, pp 57–90

    Google Scholar 

  • Zimmer RL, Woollacott RM (1977b) Metamorphosis, ancestrulae, and coloniality in bryozoan life cycles. In: Woollacott RM, Zimmer RL (eds) Biology of Bryozoans. Academic, New York, pp 91–142

    Google Scholar 

  • Zrzavý J (2003) Gastrotricha and metazoan phylogeny. Zool Scripta 32:61–81

    Article  Google Scholar 

  • Zrzavý J, Mihulka S, Kepka P, Bezdek A, Tietz D (1998) Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249–285

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff of the Heron Island Research Station for their hospitality. The help of Gemma Richards, Erin Noonan, and Danial Jackson (Brisbane) with the collection and fixation of larval material is gratefully acknowledged. We extend our thanks to Charles David and Olga Alexandrova (Munich) for providing access to confocal microscopy facilities and to the German Science Foundation and the Australian Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wanninger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanninger, A., Koop, D. & Degnan, B.M. Immunocytochemistry and metamorphic fate of the larval nervous system of Triphyllozoon mucronatum (Ectoprocta: Gymnolaemata: Cheilostomata). Zoomorphology 124, 161–170 (2005). https://doi.org/10.1007/s00435-005-0004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-005-0004-7

Keywords

Navigation