Skip to main content

Sea Otter Behavior: Morphologic, Physiologic, and Sensory Adaptations

  • Chapter
  • First Online:
Ethology and Behavioral Ecology of Sea Otters and Polar Bears

Abstract

Morphology and physiology enable but also constrain an animal’s behavior and physical performance, and sensory systems affect how an animal perceives its environment. Sea otters are grouped with other raptorial predators even though they capture and manipulate prey with their forepaws and consume it at the water’s surface. They have a short, robust skull and mandibles that enhance bite force. Their postcanine teeth have rounded or conical cusps and large surfaces for cracking or crushing mollusk shells, crustacean exoskeletons, or the test of echinoderms, such as sea urchins. The axial skeleton of sea otters is modified for aquatic locomotion, with a flexible spine and foreshortened limbs to reduce hydrodynamic drag. Forelimbs are used to capture and manipulate prey and for using tools (e.g., rocks) to open hard-shelled prey, but not for locomotion. Sea otters use dorsoventral undulation with simultaneous pelvic paddling during routine submerged swimming, and their hindfeet are modified into flippers for more efficient thrust. Because of their large lung volume, sea otters are positively buoyant and rest (sleep) effortlessly or swim in supine position at the surface, using alternate stroking of the hind flippers, although they are clumsy and slow when walking on land. To offset the high thermal conductivity of water, sea otters have a mass-specific basal metabolic rate that is 2.9-fold higher than a terrestrial eutherian mammal. As a result, they consume about 25% of their body mass daily, which requires them to spend 14–50% of their activity budget foraging. Because sea otters rely almost exclusively on fur for thermal insulation, they groom (felt) their dense fur to trap an air layer next to the skin, and this essential behavior represents a significant part of the daily activity budget. Sea otters have dichromatic color vision, underwater acuity similar to other marine mammals, and the aerial acuity of many terrestrial mammals. Although sea otters detect underwater sounds, hearing is primarily adapted for air, and they do not vocalize underwater. Their forepaws have good tactile surface discrimination for identifying prey by touch, but the role of their vibrissae in foraging is uncertain. Sea otters discriminate odorants and have a vomeronasal gland, which may detect pheromones that convey social or sexual (endocrine) cues that influence behavior and reproductive physiology. Based on the presence of taste buds, sea otters may have a gustatory sense. Compared to cetaceans, the sensory systems of sea otters are more similar to amphibious pinnipeds and terrestrial carnivorans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barabash-Nikiforov II (1947) Kalan (The sea otter). Soviet Ministry RSFSR (Transl. from Russian by Israel Prog of Sci Transl, Jerusalem, Israel, 1962, p 227)

    Google Scholar 

  • Blair FW, Blair AP, Brodkorb P, Cagle FR, Moore GA (1968) Vertebrates of the United States. McGraw-Hill, New York. 819 p

    Google Scholar 

  • Bodkin JL, Esslinger GG, Monson DH (2004) Foraging depths of sea otters and implications to coastal marine communities. Mar Mam Sci 20:305–321

    Article  Google Scholar 

  • Botton-Divet L, Cornette R, Fabre A-C, Herrel A, Houssaye A (2016) Morphological analysis of long bones in semi-aquatic mustelids and their terrestrial relatives. Integ Comp Biol 56:1298–1309

    Article  Google Scholar 

  • Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902

    Article  CAS  PubMed  Google Scholar 

  • Christiansen P, Adolfssen JS (2007) Osteology and ecology of Megantereon cultridens SE311 (Mammalia; Felidae; Machairodontinae), a sabrecat from the Late Pliocene-Early Pleistocene of Senéze, France. Zool J Linnean Soc 151:833–884

    Article  Google Scholar 

  • Cortez M, Wolt R, Gelwick F, Osterrieder S, Davis RW (2016a) Development of an altricial mammal at sea: I. Activity budgets of female sea otters and their pups in Simpson Bay, Alaska. J Exp Mar Biol Ecol 481:71–80

    Article  Google Scholar 

  • Cortez M, Goertz CEC, Gill VA, Davis RW (2016b) Development of an altricial mammal at sea: II. Energy budgets of female sea otters and their pups in Simpson Bay, Alaska. J Exp Mar Biol Ecol 481:81–91

    Article  Google Scholar 

  • Costa DP, Kooyman GL (1982) Oxygen consumption, thermoregulation, and the effect of fur oiling and washing on the sea otter, Enhydra lutris. Can J Zool 60:2761–2767

    Article  Google Scholar 

  • Costa DP, Kooyman GL (1984) Contribution of specific dynamic action to heat balance and thermoregulation in the sea otter Enhydra lutris. Physiol Zool 57:199–203

    Article  Google Scholar 

  • Crosfill ML, Widdicombe JG (1961) Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. J Physiol 158:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis RW (2014) A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. J Comp Physiol B 184:23–53

    Google Scholar 

  • Davis RW (2019) Marine mammals: adaptations for an aquatic life. Springer, Cham. 302 p

    Book  Google Scholar 

  • Davis RW, Williams TM, Thomas JA, Kastelein RA, Cornell LH (1988) The effects of oil contamination and cleaning on sea otters II: metabolism, thermoregulation and behavior. Can J Zool 66:2782–2790

    Google Scholar 

  • Davis RW, Kanatous SB (1999) Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives. J Exp Bio 202:1091–1113

    Article  CAS  Google Scholar 

  • Davis RW, Polasek L, Watson RR, Fuson A, Williams TM, Kanatous SB (2004) The diving paradox: new insights into the role of the dive response in air-breathing vertebrates. J Comp Biochem Physiol A 138:263–268

    Google Scholar 

  • Davis RW, Weihs D (2007) Locomotion in deep diving elephant seals: physical and physiologic constraints. Philos Trans R Soc Lond Ser B Biol Sci 362:2141–2150

    Article  CAS  Google Scholar 

  • Davis RW, Castellini MA, Kooyman GL, Maue R (1983) Renal glomerular filtration rate and hepatic blood flow during voluntary dives in Weddell seals. Am J Phys 245:R743–R748

    CAS  Google Scholar 

  • Davis RW, Bodkin JL, Coletti HA, Monson DH, Larson SE, Carswell LP, Nichol LM (2019) Future directions in sea otter research and management. Front Mar Sci 5:510

    Article  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293:102–104

    Article  CAS  PubMed  Google Scholar 

  • England DR, Dillon LS (1972) Cerebrum of sea otter. Texas J Sci 24:22

    Google Scholar 

  • Estes JA (1980) Enhydra lutris. Mamm Species 133:1–8

    Article  Google Scholar 

  • Estes JA, Tinker MT, Williams TM, Doak DF (1998) Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282:473–476

    Article  CAS  PubMed  Google Scholar 

  • Finerty SE, Wolt RC, Davis RW (2009) Summer activity pattern and field metabolic rate of adult male sea otters (Enhydra lutris) in a soft-sediment habitat in Alaska. J Exp Mar Biol Ecol 377:36–42

    Article  Google Scholar 

  • Fish FE (2000) Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale. Physiol Biochem Zool 73:683–698

    Article  CAS  PubMed  Google Scholar 

  • Fisher JB (1941) Notes on the teeth of the sea otter. J Mammal 22:428–433

    Article  Google Scholar 

  • Fujii JA, Ralls K, Tinker MT (2015) Ecological drivers of variation in tool-use frequency across sea otter populations. Behav Ecol 26:519–526

    Article  Google Scholar 

  • Gambarjan P, Karapetjan W (1961) Besonderheiten im Bau des Seelöwen (Eumetopias californianus), der Baikalrobbe (Phoca sibirica) und des Seeotters (Enhydra lutris) in Anpassung an die Fortbewegung im Wasser. Zool Jahrb 79:123–148. (in German with English abstract)

    Google Scholar 

  • Garshelis DL (1983) Ecology of sea otters in Prince William Sound, Alaska. Ph.D. Thesis, University of Minnesota, Minneapolis

    Google Scholar 

  • Gehr P, Mwangi DK, Ammann A, Maloiy GM, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to total body mass: wild and domestic mammals. Respir Physiol 44:61–86

    Article  CAS  PubMed  Google Scholar 

  • Ghoul A, Reichmuth C (2012) Sound production and reception in southern sea otters (Enhydra lutris nereis). In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life. Springer, New York, pp 157–159

    Chapter  Google Scholar 

  • Ghoul A, Reichmuth C (2014) Hearing in sea otters (Enhydra lutris): audible frequencies determined from a controlled exposure approach. Aquat Mamm 40:243–251

    Article  Google Scholar 

  • Ghoul A, Reichmuth C (2016) Auditory sensitivity and masking profiles for the sea otter (Enhydra lutris). In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life II. Springer, New York, pp 349–354

    Chapter  Google Scholar 

  • Hall KRL, Schaller GB (1964) Tool-using behavior of the California sea otter. J Mammal 45:287–298

    Article  Google Scholar 

  • Hammock J (2005) Structure, function and context: the impact of morphometry and ecology on olfactory sensitivity. Dissertation. Woods Hole Oceanographic Institution, Massachusetts Institute of Technology, MIT

    Google Scholar 

  • Herring SW, Herring SE (1974) The superficial masseter and gape in mammals. Am Nat 108:561–576

    Article  Google Scholar 

  • Hiiemae KM (2000) Feeding in mammals. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic, San Diego, pp 411–448

    Chapter  Google Scholar 

  • Howard LD (1975) Muscular anatomy of the hind limb of the sea otter Enhydra lutris. Proc Cal Acad Sci 39:411–500

    Google Scholar 

  • Jiang P, Josue J, Li X, Glaser D, Li W, Brand JG, Margolskee RF, Reed DR, Beauchamp GK (2012) Major taste loss in carnivorous mammals. Proc Natl Acad Sci U S A 109:4956–4961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joiner WJ (2016) Unraveling the evolutionary determinants of sleep. Curr Biol 26:R1073–R1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon KW (1969) The sea otter in the eastern Pacific ocean. North Am Fauna 68:1–352

    Article  Google Scholar 

  • Kilbourne BM (2017) Selective regimes and functional anatomy in the mustelid forelimb:diversification towards specializations for climbing, digging, and swimming. Ecol Evol 7:8852–8863

    Article  PubMed  PubMed Central  Google Scholar 

  • Kooyman GL (1989) Diverse divers: physiology and behavior. Springer, Berlin, p 200

    Google Scholar 

  • Kooyman GL (1973) Respiratory adaptions in marine mammals. Integr Comp Biol 13:457–468

    Google Scholar 

  • Kooyman GL, Ponganis PJ (1998) The physiological basis of diving to depth: birds and mammals. Annu Rev Physiol 60:19–32

    Article  CAS  PubMed  Google Scholar 

  • Kooyman GL, Davis RW, Castellini MA (1977) Thermal conductance of immersed pinniped and sea otter pelts before and after oiling with Prudhoe Bay crude. In: Wolfe D (ed) Fate and effects of the petroleum hydrocarbons in marine organisms and ecosystems. Pergammon Press, New York, pp 151–156

    Chapter  Google Scholar 

  • Kylstra JA, Nantz R, Crowe J, Wagner W, Saltzman HA (1967) Hydraulic compression of mice to 166 atmospheres. Science 158:793–794

    Article  CAS  PubMed  Google Scholar 

  • Lambert WD (1997) The osteology and paleoecology of the giant otter Enhydrotherium terraenovae. J Vertebr Paleontol 17:738–749

    Article  Google Scholar 

  • Law CJ, Baliga VB, Tinker MT, Mehta RS (2017) Asynchrony in craniomandibular development and growth in Enhydra lutris nereis (Carnivora: Mustelidae): are southern sea otters born to bite? Biol J Linnean Soc 121:420–438

    Article  Google Scholar 

  • Lenfant C, Johansen K, Torrance JD (1970) Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Respir Physiol 9:277–286

    Article  CAS  PubMed  Google Scholar 

  • Levenson DH, Ponganis PJ, Crognale MA, Deegan JF, Dizon A, Jacobs GH (2006) Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter. J Comp Physiol A 192:833–843

    Article  CAS  Google Scholar 

  • Lewis ME (2008) The femur of extinct bunodont otters in Africa (Carnivora, Mustelidae, Lutrinae). Comptes Rendus Palevol 7:607–627

    Article  Google Scholar 

  • Liberles SD (2009) Trace amine-associated receptors are olfactory receptors in vertebrates. Ann N Y Acad Sci 1170:168–172

    Article  CAS  PubMed  Google Scholar 

  • Liwanag HE, Berta A, Costa DP, Abney M, Williams TM (2012) Morphological and thermal properties of mammalian insulation: the evolution of fur for aquatic living. Biol J Linn Soc 106:926–939

    Article  Google Scholar 

  • Lyamin OI, Oleksenko AI, Sevostiyanov VF, Nazarenko EA, Mukhametov LM (2000) Behavioral sleep in captive sea otters. Aquat Mamm 26:132–136

    Google Scholar 

  • Lyamin O, Pryaslova J, Lance V, Siegel J (2005) Continuous activity in cetaceans after birth. Nature 435:1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyamin OL, Manger PR, Ridgway SM, Mukhametov LM, Siegel JM (2008) Cetacean sleep: an unusual form of mammalian sleep. Neurosci Biobehav Rev 32:1451–1484

    Article  PubMed  PubMed Central  Google Scholar 

  • Markey MJ, Marshall CR (2007) Terrestrial-style feeding in a very early tetrapod is supported by evidence from experimental analysis of suture morphology. Proc Natl Acad Sci U S A 104:7134–7138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall CD, Rozas K, Kot B, Gill VA (2014) Innervation patterns of sea otter (Enhydra lutris) mystacial follicle-sinus complexes. Front Neuroanat 8:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Mass AM, Supin YA (2007) Adaptive features of the aquatic mammals’ eye. Anat Rec 290:701–715

    Article  Google Scholar 

  • Mass AM, Supin YA (2018) Vision. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of marine mammals. Academic, London, pp 1035–1044

    Chapter  Google Scholar 

  • McNab BK (2008) An analysis of the factors that influence the level and scaling of mammalian BMR. Comp Biochem Physiol A Mol Integr Physiol 151:5–28

    Article  PubMed  CAS  Google Scholar 

  • McShane LJ, Estes JA, Riedman ML, Staedler MM (1995) Repertoire, structure, and individual variation of vocalizations in the sea otter. J Mammal 76:414–427

    Article  Google Scholar 

  • Murphy CJ, Bellhorn RW, Williams T, Burns MS, Schaeffel F, Howland HC (1990) Refractive state, ocular anatomy, and accommodative range of the sea otter (Enhydra lutris). Vis Res 30:23–32

    Article  CAS  PubMed  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine (2016) Approaches to understanding the cumulative effects of stressors on marine mammals. The National Academies Press. Retrieved from, Washington, DC

    Google Scholar 

  • Peterson RS, Bartholomew GA (1967) The natural history and behavior of the California sea lion. Spec Pub 1, Am Soc Mammal, 79 p

    Google Scholar 

  • Pocock RK (1928) Some external characteristics of the sea otter (Enhydra lutris). Proc Zool Soc Oxford 98:983–991

    Article  Google Scholar 

  • Polasek L, Davis RW (2001) Heterogeneity of myoglobin distribution in the locomotory muscles of five cetacean species. J Exp Biol 204:209–215

    Google Scholar 

  • Radinsky LB (1968) Evolution of somatic sensory specialization in otter brains. J Comp Neurol 134:495–506

    Article  CAS  PubMed  Google Scholar 

  • Reichmuth C, Holt MH, Mulsow J, Sills JM, Southall BL (2013) Comparative assessment of amphibious hearing in pinnipeds. J Comp Physiol A 199:491–507

    Article  Google Scholar 

  • Reilly SM, Lauder GV (1990) The evolution of tetrapod feeding behavior: kinematic homologies in prey transport. Evolution 44:1542–1557

    Article  PubMed  Google Scholar 

  • Riley MA (1985) An analysis of masticatory form and function in Three Mustelids (Martes Americana, Lutra canadensis, Enhydra lutris). J Mammal 66:519–528

    Article  Google Scholar 

  • Scholander PF, Irving L (1941) Experimental investigations on the respiration and diving of the Florida manatee. J Cell Comp Physiol 17:169–191

    Article  CAS  Google Scholar 

  • Shimek SJ (1977) Observations on the underwater foraging habits of the southern sea otter. Calif Fish Game 63:120–121

    Google Scholar 

  • Shimoda T, Nakanishi E, Yoshino S, Kobayashi S (1996) Light and scanning electron microscopic study on the lingual papillae in the newborn sea otter Enhydra lutris. Okajimas Folia Anat Jpn 73:65–74

    Article  CAS  PubMed  Google Scholar 

  • Siegel JM (2005) Clues to the functions of mammalian sleep. Nature 437:1264–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl WR (1967) Scaling of respiratory variables in mammals. J Appl Physiol 22:453–460

    Article  CAS  PubMed  Google Scholar 

  • Stella M, Kleisner K (2010) Uexküllian Umwelt as science and as ideology: the light and the dark side of a concept. Theory Biosci 129:39–51

    Article  CAS  PubMed  Google Scholar 

  • Strobel SM, Sills JM, Tinker MT, Reichmuth CJ (2018) Active touch in sea otters: in-air and underwater texture discrimination thresholds and behavioral strategies for paws and vibrissae. J Exp Biol 221:jeb181347

    Article  PubMed  Google Scholar 

  • Tarasoff FJ, Kooyman GL (1973) Observations on the anatomy of the respiratory system of the river otter, sea otter and harp seal. I. The topography, weight and measurements of the lungs. Can J Zool 51:163–170

    Article  CAS  PubMed  Google Scholar 

  • Tarasoff FJ, Bisaillon A, Piérard J, Whitt AP (1972) Locomotory patterns and external morphology of river otters, sea otters, and harp seal (Mammalia). Can J Zool 50:915–929

    Article  CAS  PubMed  Google Scholar 

  • Taylor WP (1914) The problem of aquatic adaptation in the carnivora, as illustrated in the osteology and evolution of the sea-otter. Univ Calif Publ Geol 7:465–495

    Google Scholar 

  • Taylor ME (1989) Locomotor adaptations by carnivores. In: Gittleman JL (ed) Carnivore behavior, ecology and evolution. Springer, Boston, pp 382–409

    Chapter  Google Scholar 

  • Tenney SM, Remmers JE (1963) Comparative quantitative morphology of the mammalian lung diffusing area. Nature 197:54–56

    Article  CAS  PubMed  Google Scholar 

  • Thometz NM, Tinker MT, Steadler MM, Mayer KA, Williams TM (2014) Energetic demands of immature sea otters from birth to weaning: implications for maternal costs, reproductive behavior and population level trends. J Exp Biol 217:2053–2061

    Article  CAS  PubMed  Google Scholar 

  • Thometz NM, Murray MJ, Williams TM (2015) Ontogeny of oxygen storage capacity and diving ability in the southern sea otter (Enhydra lutris nereis): costs and benefits of large lungs. Physiol Biochem Zool 88:311–327

    Article  PubMed  Google Scholar 

  • Timm LL (2013) Feeding biomechanics and craniodental morphology of otters (Lutrinae). Doctoral dissertation, Texas A&M University, 173 p

    Google Scholar 

  • Timm-Davis LL, Dewitt TJ, Marshall CD (2015) Divergent skull morphology supports two trophic specializations in otters (Lutrinae). PLoS One 10:e0143236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timm-Davis LL, Davis RW, Marshall CD (2017) Durophagous biting in sea otters (Enhydra lutris) differs kinematically from raptorial biting of other marine mammals. J Exp Biol 220:4703–4710

    PubMed  Google Scholar 

  • Tinker MT, Costa DP, Estes JA, Wieringa N (2007) Individual dietary specialization and dive behaviour in the California sea otter: using archival time-depth data to detect alternative foraging strategies. Deep-Sea Res II 54:330–342

    Article  Google Scholar 

  • Tinker MT, Hatfield BB, Harris MD, Ames JA (2016) Dramatic increase in sea otter mortality from white sharks in California. Mar Mam Sci 32:309–326

    Article  Google Scholar 

  • Tobler I (1988) Evolution and comparative physiology of sleep in animals. In: Lydic R, Biebuyck JF (eds) Clinical physiology of sleep. Springer, New York, pp 21–30

    Chapter  Google Scholar 

  • Van Valkenburgh B, Curtis A, Samuels JX, Bird D, Fulkerson B, Meachen-Samuels J, Slater GJ (2011) Aquatic adaptations in the nose of carnivorans: evidence from the turbinates. J Anat 218:298–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Wartzok D, Elsner R, Stone H, Kelly BP, Davis RW (1992) Under-ice movements and the sensory basis of hole finding behavior in ringed and Weddell Seals. C J Zool 70:1712–1722

    Article  Google Scholar 

  • Werth AJ (2000) Feeding in marine mammals. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic, San Diego, pp 487–526

    Chapter  Google Scholar 

  • Wieskotten S, Mauck B, Miersch L, Dehnhardt G, Hanke W (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbor seal (Phoca vitulina). J Exp Biol 214:1922–1930

    Article  PubMed  Google Scholar 

  • Williams TM (1989) Swimming by sea otters: adaptations for low energetic cost locomotion. J Comp Physiol A 164:815–824

    Article  CAS  PubMed  Google Scholar 

  • Williams TM, Kastelein RA, Davis RW, Thomas JA (1988) The effects of oil contamination and cleaning on sea otters I: thermoregulatory implications based on pelt studies. Can J Zool 66:2776–2781

    Article  Google Scholar 

  • Willmer P, Graham S, Johnston I (2005) Environmental physiology of animals. Blackwell Science, Oxford. 754 p

    Google Scholar 

  • Wilson DE, Bogan MA, Brownell RL Jr, Burdin AM, Maminov MK (1991) Geographic variation in sea otters, Enhydra lutris. J Mammal 72:22–36

    Article  Google Scholar 

  • Wolt RC, Gelwick FP, Weltz F, Davis RW (2012) Foraging behavior and prey of sea otters in a soft-and mixed-sediment benthos in Alaska. Mar Biol 77:271–280

    Google Scholar 

  • Yeates LC, Williams TM, Fink TL (2007) Diving and foraging energetics of the smallest marine mammal, the sea otter (Enhydra lutris). J Exp Biol 210:1960–1970

    Article  PubMed  Google Scholar 

  • Ziscovici C, Lucas PW, Constantino PJ, Bromage TG, van Casteren A (2014) Sea otter dental enamel is highly resistant to chipping due to its microstructure. Biol Lett 10:20140484

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall W. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zellmer, N.T., Timm-Davis, L.L., Davis, R.W. (2021). Sea Otter Behavior: Morphologic, Physiologic, and Sensory Adaptations. In: Davis, R.W., Pagano, A.M. (eds) Ethology and Behavioral Ecology of Sea Otters and Polar Bears. Ethology and Behavioral Ecology of Marine Mammals. Springer, Cham. https://doi.org/10.1007/978-3-030-66796-2_3

Download citation

Publish with us

Policies and ethics