Skip to main content
Log in

Distribution of catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive neurons and processes in the nervous system of the actinotroch larva ofPhoronis muelleri (Phoronida)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Glyoxylic-acid-induced fluorescence of catecholamines and antibodies against serotonin and FMRFamide were used to study the distribution of putative neurotransmitters in the actinotroch larva ofPhoronis muelleri Selys-Longchamps, 1903. Catecholamines occur in the neuropile of the apical ganglion, in the longitudinal median epistome nerves, in the epistome marginal nerves, and in the nerve along the bases of the tentacles. The tentacles have laterofrontal and latero-abfrontal bundles of processes that form two minor nerves along the lateral ciliary band of the tentacles, and a medio-frontal bundle of processes. Monopolar cells are located on the ventro-lateral part of the mesosome. Processes are located along the posterior ciliary band and as a reticulum in the epidermis. Serotonin-like immunoreactive cells and processes are located in the apical ganglion, in the longitudinal median epistome nerves, and as a dorsal and ventral pair of bundles along the tentacle bases. Processes from the latter extend into the tentacles as the medioabfrontal processes. The latero-abfrontal processes form a minor nerve along the ciliary band. The dorsal bundles forms the major nerve ring along the tentacles and processes extend from it to the metasome. Processes are located along the posterior ciliary band. FMRFamide-like immunoreactive cells and processes are found in the apical ganglion, in the longitudinal median epistome nerves and as a pair of lateral epistome processes projecting towards the ring of tentacles. In the tentacles, a pair of latero-frontal processes are found; these form a minor nerve along the ciliary band. A band of cells can be seen along the tentacle ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiello E (1974) Control of ciliary activity in Metazoa. In: Sleigh MA (ed) Cilia and flagella. Academic Press, London, pp 353–376

    Google Scholar 

  • Aiello E, Hager E (1986) An opioid mechanism modulates dopaminergic control of ciliary activity in the marine musselMytilus edulis. In: Stefano GB (ed) Handbook of comparative opioid and related neuropeptide mechanisms, vol 2. CRC Press, Boca Raton, pp 233–241

    Google Scholar 

  • Bisgrove BW, Burke RD (1987) Development of the nervous system of the pluteus larva ofStrongylocentrotus droebachiensis. Cell Tissue Res 248:335–343

    Google Scholar 

  • Brooks WK, Cowles RP (1905)Phoronis architecta: its life history, anatomy, and breeding habits. Mem Nat Acad Sci 10:71–113, plates I–XVII

    Google Scholar 

  • Budnik V, White K (1988) Catecholamine-containing neurons inDrosophila melanogaster: distribution and development. J Comp Neurol 268:400–413

    Google Scholar 

  • Burke RD (1983) The structure of the larval nervous system ofPisaster ochraceus (Echinodermata: Astroidea). J Morphol 178:23–35

    Google Scholar 

  • Burke RD, Brand DG, Bisgrove BW (1986) Structure of the nervous system of the auricularia larva ofParastichopus californicus. Biol Bull 170:450–460

    Google Scholar 

  • Cori CI (1939) Phoronidea. Bronn's K1 Ordn Tierreichs 4:1:1

    Google Scholar 

  • Cottrell GA, Davies NW, Turner J, Oates A (1988) Actions and roles of the FMRFamide peptides inHelix. In: Thorndyke MC, Goldsworthy GJ (eds) Neurohormones in invertebrates. Cambridge University Press, Cambridge, pp 283–298

    Google Scholar 

  • Evans PD, Myers CM (1986) The modulatory actions of FMRFamide and related peptides on the locust skeletal muscle. J Exp Biol 126:403–422

    Google Scholar 

  • Greenberg MJ, Price DA (1988) The phylogenetic and biomedical significance of extended neuropeptide families. Mem Cal Acad Sci 13:85–96

    Google Scholar 

  • Greenberg MJ, Price DA, Lehman HK (1985) FMRFamide-like peptides of molluscs and vertebrates: distribution and evidence of function. In: Kobayashi H, Bern U, Urano A (eds) Neurosecretion and the biology of neuropeptides. Jpn Sci Soc Press, Tokyo, Springer, Berlin Heidelberg New York, pp 370–376

    Google Scholar 

  • Greenberg MJ, Lambert SM, Lehman HK, Price DA (1986) The enkephalins and FMRFamide-like peptides: the case for coevolution. In: Stefano GB (ed) Handbook of comparative opioid and related neuropeptide mechanisms, vol 1. CRC Press, Boca Raton, pp 93–101

    Google Scholar 

  • Grimmelikhuijzen CJP, Graff D, Spencer AN (1988) Structure, location and possible actions of Arg-Phe-amide peptides in coelenterates. In: Thorndyke MC, Goldsworthy GJ (eds) Neurohormones in invertebrates. Cambridge University Press, Cambridge, pp 199–217

    Google Scholar 

  • Hay-Schmidt A (1989) The nervous system of the actinotroch larva ofPhoronis muelleri (Phoronida). Zoomorphology 108:333–351

    Google Scholar 

  • Herrmann K (1976) Untersuchungen über Morphologie, Physiologie und Ökologie der Metamorphose vonPhoronis muelleri (Phoronida). Zool Jb Anat 95:354–426

    Google Scholar 

  • Hyman LH (1959) The invertebrates: smaller coelomate groups. Vol 5, McGraw-Hill, New York London Toronto, pp 228–274

    Google Scholar 

  • Ikeda I (1901) Observations on the development, structure and metamorphosis of actinotrocha. J Coll Sci Imp Univ Tokyo 13:507–592, plates XXV–XXX

    Google Scholar 

  • Klemm N, Hustert R, Cantera R, Nässel DR (1986) Neurons reactive to antibodies against serotonin in the stomatogastric nervous system and in the alimentary canal of locusts and crickets (Orthoptera, Insecta). Neuroscience 17:241–261

    Google Scholar 

  • Kowalevsky A (1867) Entwicklungsgeschichte der einfachen Ascidien. Mem Acad Imper St. Petersbourg, VIIe ser. vol X (15):1–19, plates 1–3

    Google Scholar 

  • Lacalli TC (1981) Structure and development of the apical organ in trochophores ofSpirobranchus polycerus Phyllodoce maculata andPhyllodoce mucosa (Polychaeta). Proc R Soc Lond (Biol) 212:381–402

    Google Scholar 

  • Lacalli TC (1984) Structure and organization of the nervous system in the trochophore larva ofSpirobranchus. Philos Trans R Soc Lond (Biol) 306:79–135

    Google Scholar 

  • Lacalli TC (1989) Structure and function of the nervous system in the actinotroch larva ofPhoronis vancouverensis. Philos Trans R Soc Lond (Biol) (in press)

  • Leuckart R (1867) Berich über die wissenschaftlichen Leistungen in der Naturgeschichte der niederen Thiere während der Jahre 1866 und 1867. Arch Naturg 2:235–244

    Google Scholar 

  • Marsden JR, Hassessian H (1986) Effects of Ca2+ and catecholamines on swimming cilia of the trochophore larva of the polychaeteSpirobranchus giganteus (Pallas). J Exp Mar Biol Ecol 95:245–255

    Google Scholar 

  • Masterman AT (1898) On the diplochorda. Q J Microsc Sci 40:281–366, plates 23–26

    Google Scholar 

  • Müller J (1846) Bericht über einige neue Thierformen der Nordsee. Arch Anat Physiol 1846:101–104, plate 5

    Google Scholar 

  • Muneoka Y, Saitoh H (1986) Pharmacology of FMRFamide inMytilus catch muscle. Comp Biochem Physiol 85C:207–214

    Google Scholar 

  • Murakami A (1983) Control of ciliary beat frequency inMytilus. J Submicrosc Cytol 15:313–316

    Google Scholar 

  • Murakami A (1987) Control of ciliary beat frequency in the gill ofMytilus-I. Activation of the lateral cilia by cyclic AMP. Comp Biochem Physiol 86C:273–279

    Google Scholar 

  • Nakajima Y (1988) Serotonergic nerve cells of starfish larvae. In: Burke RD, Mladenov PV, Lambert P, Parsley RL (eds) Echinoderm biology. AA Balkema, Rotterdam Brookfield, pp 235–239

    Google Scholar 

  • Nielsen C (1985) Animal phylogeny in the light of the trochaea theory. Biol J Linn Soc 25:243–299

    Google Scholar 

  • Nielsen C (1987) Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta Zool (Stockh) 68:205–262

    Google Scholar 

  • Paparo AA (1986) Avarage ciliary beat in the oyster: response to photoperiod, pentylenetetrazole, salyrgan, serotonin and dopamine. Mar Behav Physiol 12:149–159

    Google Scholar 

  • Raffa RB, Bianchi CP (1986) Further evidence for a neuromodulatory role of FMRFamide involving intracellular Ca2+ pools in smooth muscle ofMytilus edulis. Comp Biochem Physiol 84C:23–28

    Google Scholar 

  • Reuter M (1987) Immunocytochemical demonstration of serotonin and neuropeptides in the nervous system ofGyrodactylus salaris (Monogena). Acta Zool (Stockh) 68:187–193

    Google Scholar 

  • Reuter M, Lehtonen M, Wikgren M (1988) Immunocytochemical evidence of neuroactive substances in flatworms of different taxa—a comparison. Acta Zool (Stockh) 69:29–37

    Google Scholar 

  • Ruppert EE, Balser E (1986) Nephridia in the larvae of hemichordates and echinoderms. Biol Bull 171:188–196

    Google Scholar 

  • Sharpe MJ, Atkinson HJ (1980) Improved visulaization of dopaminergic neurons in nematodes using the glyoxylic acid fluorescence method. J Zool (Lond) 190:273–284

    Google Scholar 

  • Smith PR, Ruppert EE, Gardiner SL (1987) A deuterostome-like nephridium in the mitraia larva ofOwenia fusiformis (Polychaeta, Annelida). Biol Bull 172:315–323

    Google Scholar 

  • Stommel EW (1984) Calcium regenrative potentials inMytilus edulis gill abfrontal ciliated epithelial cells. J Comp Physiol A 155:445–456

    Google Scholar 

  • Stommel EW, Stephens RE (1985) Cyclic AMP and calcium in the differential control ofMytilus gill cilia. J Comp Physiol A 157:451–459

    Google Scholar 

  • Thorndyke MC, Goldsworthy GJ (1988) Neurohormones in invertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Torre JC de la, Surgeon JW (1976) A methodological approach to rapid and sensitive monoamine histofluorescence using modified glyoxylic acid technique: the SPG method. Histochemistry 49:81–93

    Google Scholar 

  • Valles AM, White K (1988) Serotonin-containing neurons inDrosophila melanogaster: development and distribution. J Comp Neurol 298:414–428

    Google Scholar 

  • Zimmer RL (1964) Reproductive biology and development of Phoronida. University Microfilms, Ann Arbor, Michigan, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay-Schmidt, A. Distribution of catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive neurons and processes in the nervous system of the actinotroch larva ofPhoronis muelleri (Phoronida). Cell Tissue Res. 259, 105–118 (1990). https://doi.org/10.1007/BF00571435

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00571435

Key words

Navigation