Skip to main content
Log in

Catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive cells and processes in the nervous system of the pilidium larva (Nemertini)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

Pilidium larvae at different developmental stages have been investigated for the occurrence of glyoxylic acid induced fluorescence in catecholamines (CA), and serotonin-like (5-HT) and neuropeptide FMRFamide-like (FMRFamide) immunoreactivity (ir). The distribution of CA, 5-HT-ir and FMRFamide-ir cells and processes was compared with the location of nerve processes as found by transmission electron microscopy (TEM). In the pilidium larvae the marginal and oral nerves contain CA and 5-HT-ir processes and 5-HT-ir unipolar cells. The posterior suboral nerve contain CA and 5-HT-ir processes, whereas in the anterior suboral nerve neither CA nor 5-HT-ir and FMRFamide-ir were observed. The lateral helmet nerve contains FMRFamide-ir processes and unipolar cells. In the epidermis CA and 5-HT-ir multipolar cells were found. The juvenile “worm” that develops inside the pilidium larva was found to contain only 5-HT-ir. A pair of lateral cords extent the whole length of the juvenile and anteriorly they form the anterior ventral cerebral commissure. Also, from the anterior part of the lateral cords projects a pair of circumrhynchodeal processes which dorsally form the dorsal cerebral commissure. A pair of proboscis processes originate from the circumrhynchodeal processes and extend the whole length of the probosics. From the dorsal cerebral commissure cephalic processes project rostrally and ventrally. Only unipolar 5-HT-ir cells were observed, and they were located along the lateral cords into which their processes extend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AEC :

3-amino-9-ethylcarbazole

ap :

apical plate

arp :

anterior accessory ridge processes

ason :

anterior suboral nerve

CA :

catecholamines

cd :

cephalic discs

cp :

cephalic processes

crp :

circumrhynchodeal processes

DAB :

3,3'-diaminobenzidine

dc :

dorsal cerebral commissure

epi :

epidermis

es :

oesophagus

fl :

fore lobe

FMRFamide :

phe—met—arg—phe—NH2

Go :

goat

GS :

goat serum

hl :

hind lobe

int :

intestine of the juvenile

lhn :

lateral helmet nerve

lhp :

lateral helmet processes

ll :

lateral lobe

lp :

lateral processes of the juvenile

mcb :

marginal ciliary band

me :

mesoderm

mn :

marginal nerve

moc :

monociliary cell

mp :

marginal processes

mu :

muscle

muc :

multiciliary cell

n 1, n 2, n 3 :

division of marginal nerve

on :

oral nerve

op :

oral processes

pb :

proboscis

pp :

proboscis processes

pson :

posterior suboral nerve

psop :

posterior suboral processes

Ra :

rabbit

sd :

stomodeum

st :

stomach

td :

trunk discs

tr :

trunk

TRITC :

tetramethylrhodamine isothiocyanate

vc :

ventral cerebral commissure

z 1, z 2 :

ciliary zones of marginal ciliary band

5-HT :

serotonin

References

  • Aiello E (1962) Identification of the cilioexcitatory substance present in the gill of the mussel Mytilus edulis. J Cell Comp Physiol 60:17–21

    Google Scholar 

  • Aiello E (1974) Control of ciliary activity in metazoa. In: Sleigh MA (ed) Cilia and Flagella, Academic Press, London, pp 353–375

    Google Scholar 

  • Aiello E, Guideri G (1966) Relationship between 5-hydroxytryptamine and nerve stimulation of ciliary activity. J Pharmacol Exp Ther 154:517–523

    Google Scholar 

  • Aiello E, Hager E (1986) An opioid mechanism modulates dopaminergic control of ciliary activity in the marine mussel Mytilus edulis. In: Stefano GB (ed) CRC Handbook of Comparative Opioid and Related Neuropeptide Mechanisms, Vol 2. CRC Press, Inc. Boca Raton, Florida, pp 233–241

    Google Scholar 

  • Bisgrove BW, Burke RD (1986) Development of serotonergic neurons in the embryos of the sea urchin, Strongylocentrotus purpuratus. Dev Growth Differ 28:569–574

    Google Scholar 

  • Bisgrove BW, Burke RD (1987) Development of the nervous system of the pluteus larva of Strongylocentrotus droebachiensis. Cell Tissue Res 248:335–343

    Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. Vol 1. W.H. Freeman and Company, San Francisco London

    Google Scholar 

  • Bürger O (1897–1907) Nemertini (Schnurwürmer). Bronn's Kl Ordn Tierreichs 4:1:suppl

    Google Scholar 

  • Burke RD (1983) Structure of the larval nervous-system of Pisaster ochraceus (Echinodermata: Asteroidea). J Morphol 1787:23–35

    Google Scholar 

  • Burke RD, Brand DG, Bisgrove BW (1986) Structure of the nervous system of the auricularia larva of Parastichopus californicus. Biol Bull 170:450–460

    Google Scholar 

  • Cantell C-E (1966) The devouring of the larval tissues during the metamorphosis of pilidium larvae (Nemertini). Ark Zool (Uppsala) 18:489–493

    Google Scholar 

  • Cantell C-E (1969) Morphology, development, and biology of the pilidium larvae (Nemertini) from the swedish west coast. Zool Bidr (Uppsala) 38:61–112 plates 1–6

    Google Scholar 

  • Ferrais JD (1978) Neurosecretion in selected nemertina. Zoomorphologie 91:275–287

    Google Scholar 

  • Gibson R (1972) Nemerteans. Hutchinson and Co, Ltd, London

    Google Scholar 

  • Gosselin RE (1961) The cilioexcitatory activity of serotonin. J Cell Comp Physiol 58:17–26

    Google Scholar 

  • Hay-Schmidt A (1990a) Distribution of catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive neurons and processes in the nervous system of the actinotroch larva of Phoronis muelleri (Phoronida). Cell Tissue Res 259:105–118

    Google Scholar 

  • Hay-Schmidt A (1990b) Catecholamine-containing, serotonin-like and FMRFamide-like immunoreactive neurons and processes in the nervous system of the early actinotroch larva of Phoronis vancouverensis (Phoronida): Distribution and Development. Can J Zool (in press)

  • Hyman LB (1951) The invertebrates, vol 2: Platyhelminthes and Rhynchocoela. McGraw-Hill Book Company, Inc, New York Toronto London

    Google Scholar 

  • Iwata F (1958) On the development of the nemertean Micura akkeshiensis. Embryologia 4:103–131

    Google Scholar 

  • Jennings JB, Davenport IRB, Varndell IM (1987) FMRFamide-like immunoreactivity in turbellarians and nemerteans — evidence for a novel neurovascular coordinating system in nemerteans. Comp Biochem Physiol 86C:425–430

    Google Scholar 

  • Kalt MR, Tandler B (1971) A study of fixation of early amphibian embryos for electron microscopy. J Ultrastruct Res 36:633–645

    Google Scholar 

  • Lacalli TC, West JC (1985) The nervous system of a pilidium larva: evidence from electron microscope reconstructions. Can J Zool 63:1909–1916

    Google Scholar 

  • Malanga CJ, Poll KA (1979) Effects of the cilioexcitatory neurohumors dopamine and 5-hydroxytryptamine on cyclic AMP levels in the gill of the mussel Mytilus edulis. Life Sci 25:365–374

    Google Scholar 

  • Mizukawa K, Otsuka N, Hattori T (1986) Serotonin-containing nerve fibers in the rat spinal cord: Electron microscopic immunohistochemistry. Acta Med Okayama 40:1–10

    Google Scholar 

  • Müller J (1847) Fortsetzung des Berichts über einige neue Thierformen der Nordsee. Arch Anat Physiol 1847:159–160

    Google Scholar 

  • Murakami A (1983) Control of ciliary beat frequency in Mytilus. J Submicrosc Cytol 15:313–316

    Google Scholar 

  • Murakami A (1987a) Control of ciliary beat frequency in the gill of Mytilus — I. Activation of the lateral cilia by cyclic AMP. Comp Biochem Physiol 86C:273–279

    Google Scholar 

  • Murakami A (1987b) Control of ciliary beat frequency in the gill of Mytilus — II. Effects of saponin and Brij-58 on the lateral cilia. Comp Biochem Physiol 86C:281–287

    Google Scholar 

  • Nakajima Y (1987) Localization of catecholaminergic nerves in larval echinoderms. Zool Sci 4:293–299

    Google Scholar 

  • Nakajima Y (1988) Serotonergic nerve cells of starfish larvae. In: Burke RD, Mladenov PV, Lambert P, Parsley RL (eds) Echinoderm biology. A.A. Balkema, Rotterdam, Brookfield, pp 235–239

    Google Scholar 

  • Nielsen C (1985) Animal phylogeny in the light of the trochae theory. Biol J Linn Soc 25:243–299

    Google Scholar 

  • Nielsen C (1987) Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta Zool (Stockholm) 68:205–262

    Google Scholar 

  • Paparo AA (1986a) Average ciliary beat in the oyster: Response to photoperiod, pentylenetetrazole, salyrgan, serotonin and dopamine. Mar Behav Physiol 12:149–159

    Google Scholar 

  • Paparo AA (1986b) Neuroregulatory activities and potassium enhancement of lateral ctenidal beating in Crassostrea virginacea. Comp Biochem Physiol 84A:585–588

    Google Scholar 

  • Rémy C, Brossard D (1986) Immunohistological detection of metenkephalin-like neuropeptide in the brains of nemerteans (triploblastic acoelomate invertebrates). In: Stefano GB (ed) CRC Handbook of comparative opioid and related neuropeptide mechanisms, Vol 1. CRC Press, Inc. Boca Ratoon, Florida, pp 155–163

    Google Scholar 

  • Reuter M (1987) Immunocytochemical demonstration of serotonin and neuropeptides in the nervous system of Gyrodactylus salaris (Monogenea). Acta Zool (Stockholm) 68:187–193

    Google Scholar 

  • Reuter M, Lehtonen M, Wikgren M (1988) Immunocytochemical evidence for neuroactive substances in flatworms of different taxa — a comparison. Acta Zool (Stockholm) 69:29–37

    Google Scholar 

  • Reuter M, Wikgren M, Lehtonen M (1986) Immunocytochemical demonstration of 5-HT-like and FMRF-amide-like substances in whole mounts of Microstomum lineare (Turbellaria). Cell Tissue Res 246:7–12

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Google Scholar 

  • Salensky W (1886) Bau und Metamorphose des Pilidium. Z Wiss Zool 43:481–511

    Google Scholar 

  • Salensky W (1912) Über die Morphogenese der Nemertinen. — I. Entwicklungsgeschichte der Nemertine im Inneren des Pilidiums. Mem Acad Imper Sci St. Petersbourg, Ser 8, 30, No. 10:1–74 plates 1–6

    Google Scholar 

  • Schmidt GA (1937) Bau und Entwicklung der Pilidien von Cerebratulus pantherinus und marginatus. Zool Jahrb Abt Anat 62:423–448

    Google Scholar 

  • Stefano GB (1982) Comparative aspects of opioid-dopamine interaction. Cell Mol Neurobiol 2:167–178

    Google Scholar 

  • Torre JC de la, Surgeon JC (1976) A methodological approach to rapid and sensitive monoamine histofluorescence using a modified glyoxylic acid technique: The SPG method. Histochemistry 49:81–93

    Google Scholar 

  • Turbeville JM (1986) An ultrastructural analysis of coelomogenesis in the hoplonemertine Prosorhochmus americanus and the polychaete Magelona sp. J Morphol 187:51–60

    Google Scholar 

  • Wikgren CM (1986) The nervous system of early larval stages of the cestode Diphyllobothrium dendriticum. Acta Zool (Stockholm) 67:155–163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay-Schmidt, A. Catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive cells and processes in the nervous system of the pilidium larva (Nemertini). Zoomorphology 109, 231–244 (1990). https://doi.org/10.1007/BF00312190

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312190

Keywords

Navigation