Skip to main content

Advertisement

Log in

The Macrostomum lignano EST database as a molecular resource for studying platyhelminth development and phylogeny

  • Original article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

We report the development of an Expressed Sequence Tag (EST) resource for the flatworm Macrostomum lignano. This taxon is of interest due to its basal placement within the flatworms. As such, it provides a useful comparative model for understanding the development of neural and sensory organization. It was anticipated on the basis of previous studies [e.g., Sánchez-Alvarado et al., Development, 129:5659–5665, (2002)] that a wide range of developmental markers would be expressed in later-stage macrostomids, and this proved to be the case, permitting recovery of a range of gene sequences important in development. To this end, an adult Macrostomum cDNA library was generated and 7,680 Macrostomum ESTs were sequenced from the 5′ end. In addition, 1,536 of these aforementioned sequences were sequenced from the 3′ end. Of the roughly 5,416 non-redundant sequences identified, 68% are similar to previously reported genes of known function. In addition, nearly 100 specific clones were obtained with potential neural and sensory function. From these data, an annotated searchable database of the Macrostomum EST collection has been made available on the web. A major objective was to obtain genes that would allow reconstruction of embryogenesis, and in particular neurogenesis, in a basal platyhelminth. The sequences recovered will serve as probes with which the origin and morphogenesis of lineages and tissues can be followed. To this end, we demonstrate a protocol for combined immunohistochemistry and in situ hybridization labeling in juvenile Macrostomum, employing homologs of lin11/lim1 and six3/optix. Expression of these genes is shown in the context of the neuropile/muscle system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agata K (2003) Regeneration and gene regulation in planarians. Curr Opin Genet Dev 13:492–496

    Article  PubMed  CAS  Google Scholar 

  • Arendt D, Nubler-Jung K (1999) Comparison of early nerve cord development in insects and vertebrates. Development 126: 2309–2325

    PubMed  CAS  Google Scholar 

  • Arendt D, Tessmar K, de Campos-Baptista MI, Dorresteijn A, Wittbrodt J (2002) Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 129: 1143–1154

    PubMed  CAS  Google Scholar 

  • Ax P (1996) A new approach to the phylogenetic order in nature. In: Multicellular animals, vol 1. Springer, Berlin Heidelberg New York, 225 pp

    Google Scholar 

  • Baguñà J, Riutort M (2004).The dawn of bilaterian animals: the case of acoelomorph flatworms. Bioessays 26:1046–1057

    Article  PubMed  Google Scholar 

  • Baguñà J, Carranza S, Paps J, Ruiz-Trillo I, Riutort M (2001) Molecular taxonomy and phylogeny of the Tricladida. In: Littlewood D, Bray RA (eds) Interrelationships of the platyhelminthes. Taylor & Francis, London, pp 49–56

    Google Scholar 

  • Bebenek IG, Gates RD, Morris J, Hartenstein V, Jacobs DK (2004) Sine oculis in basal Metazoa. Dev Genes Evol 214: 342–351

    Article  PubMed  CAS  Google Scholar 

  • Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3: 517–530

    Article  PubMed  CAS  Google Scholar 

  • Black BL, Olson EN (1998). Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14:167–196

    Article  PubMed  CAS  Google Scholar 

  • Bosch TC (2004) Control of asymmetric cell divisions: will cnidarians provide an answer? Bioessays 26:929–931

    Article  PubMed  Google Scholar 

  • Campos-Ortega JA (1995) Genetic mechanisms of early neurogenesis in Drosophila melanogaster. Mol Neurobiol 10:75–89

    PubMed  CAS  Google Scholar 

  • Cardona A, Hartenstein V, Romero R (2005a) The embryonic development of the triclad Schmidtea polychroa. Dev Genes Evol 215:109–131

    Article  PubMed  Google Scholar 

  • Cardona A, Fernandez J, Solana J, Romero R (2005b) An in situ hybridization protocol for planarian embryos: monitoring myosin heavy chain gene expression. Dev Genes Evol 215:482–488

    Article  PubMed  Google Scholar 

  • Carroll TJ, Vize PD (1999) Synergism between Pax-8 and lim-1 in embryonic kidney development. Dev Biol 214:46–59

    Article  PubMed  CAS  Google Scholar 

  • Chang T, Mazotta J, Dumstrei K, Dumitrescu A, Hartenstein V (2001) Dpp and Hh signaling in the Drosophila embryonic eye field. Development 128:4691–4704

    PubMed  CAS  Google Scholar 

  • Doe DA (1981) Comparative ultrastructure of the pharynx simplex in Turbellaria. Zoomorphology 97:133–192

    Article  Google Scholar 

  • Ehlers U (1985) Das phylogenetische system der Plathelminthes. Gustav Fischer Verlag Stuttgart. New York

    Google Scholar 

  • Ehlers U (1992) No mitosis of differentiated epidermal cells in Plathelminthes: mitosis of an intraepidermal stem cell in Rhynchoscolex simplex Leidy 1851 (Catenulida). Mikrofauna Marina 7:311–321

    Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Falkner FG, Saumweber H, Biessmann H (1981) Two Drosophila melanogaster proteins related to intermediate filament proteins of vertebrate cells. J Cell Biol 91:175–183

    Article  PubMed  CAS  Google Scholar 

  • Fisher A, Caudy M (1998). The function of hairy-related bHLH repressor proteins in cell fate decisions. Bioessays 20:298–306

    Article  PubMed  CAS  Google Scholar 

  • Genova JL, Fehon RG (2003) Neuroglian, Gliotactin, and the Na+/K+ ATPase are essential for septate junction function in Drosophila. J Cell Biol 161:979–989

    Article  PubMed  CAS  Google Scholar 

  • Gregory SL, Brown NH (1998) kakapo, a gene required for adhesion between and within cell layers in Drosophila, encodes a large cytoskeletal linker protein related to plectin and dystrophin. J Cell Biol 143:1271–1282

    Article  PubMed  CAS  Google Scholar 

  • Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25:263–269

    Article  PubMed  CAS  Google Scholar 

  • Hartenstein V, Ehlers U (2000) The embryonic development of the rhabdocoel flatworm Mesostoma lingua. Dev Genes Evol 210:399–415

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich KA, Linseman DA (2004) Myocyte enhancer factor-2 transcription factors in neuronal differentiation and survival. Mol Neurobiol 29:155–166

    Article  PubMed  CAS  Google Scholar 

  • Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    Article  PubMed  CAS  Google Scholar 

  • Hirth F, Kammermeier L, Frei E, Walldorf U, Noll M, Reichert H (2003) An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 130:2365–2373

    Article  PubMed  CAS  Google Scholar 

  • Hobert O, Westphal H (2000) Functions of LIM-homeobox genes. Trends Genet 16:75–83

    Article  PubMed  CAS  Google Scholar 

  • Holland ND (2003) Early central nervous system evolution; an era of skin brains? Nat Rev Neurosci 4: 617–627

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Huber TL, Zon LI (1998) Transcriptional regulation of blood formation during Xenopus development. Semin Immunol 10:103–109

    Article  PubMed  CAS  Google Scholar 

  • Ikenishi K (1998) Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev Growth Differ 40:1–10

    Article  PubMed  CAS  Google Scholar 

  • Jacobs DK, Lee SE, Dawson MN, Staton JL, Raskoff KA (1998) The history of development through the evolution of molecules: gene trees, hearts, eyes, and dorsoventral inversion. In: DeSalle R, Schierwater B (eds) Molecular Approaches to Ecology and Evolution. Birkhauser, Basel, pp 323–357

    Google Scholar 

  • Joffe BI (1987) On the evolution of the pharynx in the flatworms (in Russian).Trudy Zoologichrskogo Instituta Akademii Nauk SSSR 221:34–71

    Google Scholar 

  • Jondelius U, Larsson K, Raikova O (2004) Cleavage in nemertoderma westbladi (Nemertodermatida) and its phylogenetic significance. Zoomorphology 123: 221–225

    Article  Google Scholar 

  • Karabinos A, Schulze E, Schunemann J, Parry DA, Weber K (2003) In vivo and in vitro evidence that the four essential intermediate filament (IF) proteins A1, A2, A3 and B1 of the nematode Caenorhabditis elegans form an obligate heteropolymeric IF system. J Mol Biol 333:307–319

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K, Sato S, Ozaki H, Ikeda K (2000). Six family genes—structure and function as transcription factors and their roles in development. BioEssays 22:616–626

    Article  PubMed  CAS  Google Scholar 

  • Ladurner P, Schaerer L, Salvenmoser W et al (2005a) A new model organism among the lower Bilateria and the use of digital microscopy in taxonomy of meiobenthic Platyhelminthes: Macrostomum lignano, n. sp (Rhabditophora, Macrostomorpha). J Zoolog Syst Evol Res 43:114–126

    Article  Google Scholar 

  • Ladurner P, Pfister D, Seifarth C, Scharer L, Mahlknecht M, Salvenmoser W, Gerth R, Marx F, Rieger (2005b) Production and characterisation of cell- and tissue-specific monoclonal antibodies for the flatworm Macrostomum sp. Histochem Cell Biol 123:89–104

    Article  PubMed  CAS  Google Scholar 

  • Lane NJ (1991). Morphology of glial blood–brain barriers. Ann N Y Acad Sci 633:348–362

    PubMed  CAS  Google Scholar 

  • Lee S, Harris KL, Whitington PM, Kolodziej PA (2000) short stop is allelic to kakapo, and encodes rod-like cytoskeletal-associated proteins required for axon extension. J Neurosci 20:1096–1108

    Google Scholar 

  • Lenz PH, Hartline DK, Davis AD (2000) The need for speed. I. Fast reactions and myelinated axons in copepods. J Comp Physiol A 186:337–345

    Article  PubMed  CAS  Google Scholar 

  • Lichtneckert R, Reichert H (2005) Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity 94: 465–477

    Article  PubMed  CAS  Google Scholar 

  • Liu IS, Chen JD, Ploder L, Vidgen D, van der Kooy D, Kalnins VI, McInnes RR (1994). Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13:377–393

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Friedrich M (2004) The tribolium homologue of glass and the evolution of insect larval eyes. Dev Biol 269:36–54

    Article  PubMed  CAS  Google Scholar 

  • Lord BA, DiBona DR (1976) Role of the septate junction in the regulation of paracellular transepithelial flow. J Cell Biol 71:967–72

    Article  PubMed  CAS  Google Scholar 

  • Morris J, Nallur R, Ladurner P, Egger B, Rieger R, Hartenstein V (2004) The embryonic development of the flatworm Macrostomum sp. Dev Gen Evol 214: 220–239

    Article  Google Scholar 

  • Oliver G, Mailhos A, Wehr R, Copeland NG, Jenkins NA, Gruss P. (1995) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121:4045–4055

    PubMed  CAS  Google Scholar 

  • Orii H, Sakurai T, Watanabe K (2005) Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica. Dev Genes Evol 215:143–157

    Article  PubMed  CAS  Google Scholar 

  • Perrone-Bizzozero N, Bolognani F (2002) Role of HuD and other RNA-binding proteins in neural development and plasticity. J Neurosci Res 68:121–126

    Article  PubMed  CAS  Google Scholar 

  • Pichaud F, Desplan C (2002) Pax genes and eye organogenesis. Curr Opin Genet Dev 12:430–434

    Article  PubMed  CAS  Google Scholar 

  • Pineda D, Gonzales J, Callerts P, Ikeo K, Gehring WJ, Saló E (2000) Searching for the prototypic eye genetic network: sine oculis is essential for eye regeneration in planarians. Proc Natl Acad Sci USA 97:4525–4529

    Article  PubMed  CAS  Google Scholar 

  • Radojcic T, Pentreath VW (1979) Invertebrate glia. Prog Neurobiol 12:115–179

    Article  PubMed  CAS  Google Scholar 

  • Raikova O, Reuter M, Gustafsson M (2004) Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology 107:75–86

    Article  PubMed  Google Scholar 

  • Reddien PW, Sanchez Alvarado A (2004) Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 20:725–757

    Article  PubMed  CAS  Google Scholar 

  • Reichert H (2002) Conserved genetic mechanisms for embryonic brain patterning. Int J Dev Biol 46:81–87

    PubMed  Google Scholar 

  • Reuter M, Halton DW (2001) Comparative neurobiology of Platyhelminthes. In: Littlewood D, Bray RA (eds) “Interrelationships of the Platyhelminthes”. Taylor & Francis, London, pp 231–238

    Google Scholar 

  • Reuter M, Raikova O, Gustafsson M (2001a) Patterns in the nervous and muscle systems in lower flatworms. Belg J Zool 131:47–53 (Supp1)

    Google Scholar 

  • Reuter M, Raikova O, Jondelius U (2001b) Organisation of the nervous system in the Acoela: an immunocytochemical study. Tissue Cell 33:119–128

    Article  PubMed  CAS  Google Scholar 

  • Rieger RM, Tyler S, Smith III JPS, Rieger GE (1991) Platyhelminthes: Turbellaria. In: Harrison FW, Bogitsh BJ (eds) Microscopic anatomy of invertebrates, vol. 3. Wiley–Liss, New York

    Google Scholar 

  • Rieger RM (2001) Phylogenetic systematics of the Macrostomorpha. In: Littlewood D, Bray RA (eds) Interrelationships of the platyhelminthes. Taylor & Francis, London, pp 28–38

    Google Scholar 

  • Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W et al (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Riutort M, Littlewood DTJ, Herniou EA, Baguñà J (1999) Acoel flatworms: earliest extant bilaterian metazoans, not members of platyhelminthes. Science 283:1919–1923

    Article  PubMed  CAS  Google Scholar 

  • Saló E, Baguñà J (2002) Regeneration in planarians and other worms: new findings, new tools, and new perspectives. J Exp Zool 292:528–539

    Article  PubMed  Google Scholar 

  • Sánchez-Alvarado A, Newmark PA, Robb SM, Juste R (2002) The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development 129:5659–5665

    Article  PubMed  Google Scholar 

  • Sarafi-Reinach TR, Melkman T, Hobert O, Sengupta P (2001) The lin-11 LIM homeobox gene specifies olfactory and chemosensory neuron fates in C. elegans. Development 128: 3269–3281

    PubMed  CAS  Google Scholar 

  • Schonemann MD, Ryan AK, Erkman L, McEvilly RJ, Bermingham J, Rosenfeld MG (1998) POU domain factors in neural development. Adv Exp Med Biol 449:39–53

    PubMed  CAS  Google Scholar 

  • Shawlot W, Behringer RR (1995) Requirement for Lim1 in head-organizer function. Nature 374:425–430

    Article  PubMed  CAS  Google Scholar 

  • Shivdasani RA (2002). Molecular regulation of vertebrate early endoderm development. Dev Biol 249:191–203

    Article  PubMed  CAS  Google Scholar 

  • Taira M, Otani H, Jamrich M, Dawid IB (1994) Expression of the LIM class homeobox gene Xlim-1 in pronephros and CNS cell lineages of Xenopus embryos is affected by retinoic acid and exogastrulation. Development 120:1525–1536

    PubMed  CAS  Google Scholar 

  • Takahashi T, Hatta M, Yum S, Gee L, Ohtani M, Fujisawa T, Bode HR (2005). Hym-301, a novel peptide, regulates the number of tentacles formed in hydra. Development 132:2225–2234

    Article  PubMed  CAS  Google Scholar 

  • Telford MJ, Wise MJ, Gowri-Shankar V (2005) Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: Examples from the Bilateria. Mol Biol Evol 22:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Tepass U, Truong K, Godt D, Ikura M, Peifer M (2000) Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol 1:91–100

    Article  PubMed  CAS  Google Scholar 

  • Thomas MB (1986) Embryology of the turbellaria and its phylogenetic significance. Hydrobiologia 132:105–115

    Article  Google Scholar 

  • Thor S, Thomas J (2002) Motor neuron specification in worms, flies and mice: conserved and ‘lost’ mechanisms. Curr Opin Genet Dev 12: 558–564

    Article  PubMed  CAS  Google Scholar 

  • Torrado M, Mikhailov A (2000) Frog Lim-1-like protein Is expressed predominantly in the nervous tissue, gonads, and early embryos of the bivalve mollusc Mytilus galloprovincialis. Biol Bull 199:29–40

    PubMed  CAS  Google Scholar 

  • Tyler S (2001) The early worm—origins and relationships of the lower flatworms. In: Littlewood D, Bray RA (eds) “Interrelationships of the Platyhelminthes”. Taylor & Francis, London, pp 3–12

    Google Scholar 

  • Wada H, Saiga H, Satoh N, Holland PW (1998). Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development 125: 1113 –1122

    PubMed  CAS  Google Scholar 

  • Wang J, Karabinos A, Zimek A, Meyer M, Riemer D, Hudson C, Lemaire P, Weber K (2002) Cytoplasmic intermediate filament protein expression in tunicate development: a specific marker for the test cells. Eur J Cell Biol 81:302–311

    Article  PubMed  CAS  Google Scholar 

  • Weaver DJ, Viancour TA (1991) The crayfish neuronal cytoskeleton: an investigation of proteins having neurofilament-like immunoreactivity. Brain Res 544:49–58

    Article  PubMed  CAS  Google Scholar 

  • Westheide W, Rieger R (eds) (1996) Spezielle Zoologie. Gustav Fischer, Stuttgart Jena New York

  • Younossi-Hartenstein A, Hartenstein V (2000a) Comparative approach to developmental analysis: the case of the dalyellid flatworm, Gieysztoria superba. Int J Dev Biol 44: 499–506

    PubMed  CAS  Google Scholar 

  • Younossi-Hartenstein A, Hartenstein V (2000b) The embryonic development of the polyclad flatworm Imgogine mcgrathi. Dev Genes Evol 210:383–398

    Article  PubMed  CAS  Google Scholar 

  • Younossi-Hartenstein A, Hartenstein V (2001) The embryonic development of the temnocephalid flatworms Craspedella pedum and Diceratocephala sp. Cell Tissue Res 304:295–310

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF Grant IBN-0110718 to V.H., FWF Grants P15204 and 16618 to R.M.R. and the Graduate Student Training Fellowship GM0718 to J.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Hartenstein.

Additional information

Communicated by D. A. Weisblat

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, J., Ladurner, P., Rieger, R. et al. The Macrostomum lignano EST database as a molecular resource for studying platyhelminth development and phylogeny. Dev Genes Evol 216, 695–707 (2006). https://doi.org/10.1007/s00427-006-0098-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-006-0098-z

Keywords

Navigation