Skip to main content

Advertisement

Log in

The embryonic development of the flatworm Macrostomum sp.

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Macrostomid flatworms represent a group of basal bilaterians with primitive developmental and morphological characteristics. The species Macrostomum sp., raised under laboratory conditions, has a short generation time of about 2–3 weeks and produces a large number of eggs year round. Using live observation, histology, electron microscopy and immunohistochemistry we have carried out a developmental analysis of Macrostomum sp. Cleavage (stages 1–2) of this species follows a modified spiral pattern and results in a solid embryonic primordium surrounded by an external yolk layer. During stage 3, cells at the anterior and lateral periphery of the embryo evolve into the somatic primordium which gives rise to the body wall and nervous system. Cells in the center form the large yolk-rich gut primordium. During stage 4, the brain primordium and the pharynx primordium appear as symmetric densities anterior-ventrally within the somatic primordium. Organ differentiation commences during stage 5 when the neurons of the brain primordium extend axons that form a central neuropile, and the outer cell layer of the somatic primordium turns into a ciliated epidermal epithelium. Cilia also appear in the lumen of the pharynx primordium, in the protonephridial system and, slightly later, in the lumen of the gut. Ultrastructurally, these differentiating cells show the hallmarks of platyhelminth epithelia, with a pronounced apical assembly of microfilaments (terminal web) inserting at the zonula adherens, and a wide band of septate junctions underneath the zonula. Terminal web and zonula adherens are particularly well observed in the epidermis. During stage 6, the somatic primordium extends around the surface dorsally and ventrally to form a complete body wall. Muscle precursors extend myofilaments that are organized into a highly regular orthogonal network of circular, diagonal and longitudinal fibers. Neurons of the brain primordium differentiate a commissural neuropile that extends a single pair of ventro-lateral nerve trunks (the main longitudinal cords) posteriorly. The primordial pharynx lumen fuses with the ventral epidermis anteriorly and the gut posteriorly, thereby generating a continuous digestive tract. The embryo adopts its final shape during stages 7 and 8, characterized by the morphallactic lengthening of the body into a U-shaped form and the condensation of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3a–d
Fig. 4a–d
Fig. 5a–d
Fig. 6a–j
Fig. 7a–h
Fig. 8a–i
Fig. 9a–j
Fig. 10a–h
Fig. 11a–f
Fig. 12a–l
Fig. 13a–d

Similar content being viewed by others

References

  • Ashburner M (1989) Drosophila. A laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

  • Ax P (1961) Verwandtschaftsbeziehungen und Phylogenie der Turbellarien. Ergebn Biol 24:1–68

    CAS  Google Scholar 

  • Ax P (1996) Multicellular animals. A new approach to the phylogenetic order in nature. Springer, Berlin Heidelberg New York

  • Ax P, Borkott H (1968a) Organisation und Fortpflanzung von Macrostomum romanicum (Turbellaria, Macrostomida). Verh Dtsch Zool Ges Innsbruck 30b:344–347

    Google Scholar 

  • Ax P, Borkott H (1968b) Organisation und Fortpflanzung von Macrostomum salinum (Turbellaria-Macrostomida). Inst Wiss Film C 947:1–11

    Google Scholar 

  • Baguñà J, Boyer BC (1990) Descriptive and experimental embryology of the Turbellaria: present knowledge, open questions and future trends. In: Marthy HJ (ed) Experimental embryology in aquatic plants and animals. Plenum Press, New York, pp 95–128

  • Baguñà J, Carranza S, Paps J, Ruiz-Trillo I, Riutort M (2001) Molecular taxonomy and phylogeny of the Tricladida. In: Littlewood D, Bray RA (eds) Interrelationships of the platyhelminthes. Taylor & Francis, London, pp 49–56

  • Bennazzi M, Gremigni V (1982) Developmental biology of triclad turbellarians (Planaria). In: Harrison FW, Cowden RR (eds) Developmental biology of freshwater invertebrates. Liss, New York, pp 151–211

  • Bogomolow SI (1949) Zur Frage nach dem Typus der Furchung bei den Rhabdocoela. Wiss Schr Leningrader Staatl Univ Ser Biol 20:128–142

    Google Scholar 

  • Bogomolow SI (1960) Über die Furchung von Macrostomum rossicum Beklemichev und deren Beziehung zur Furchung der Turbellaria Coelata und Acoela. Vt Sov Can Embriol SSSR 1960:23–24

    Google Scholar 

  • Boyer BC, Henry JQ, Martindale MQ (1996) Dual origins of mesoderm in a basal spiralian: cell lineage analyses in the polyclad turbellarian Notoplana inquilina. Dev Biol 179:328–338

    Article  Google Scholar 

  • Boyer BC, Henry JJ, Martindale MQ (1998) The cell lineage of a polyclad turbellarian embryo reveals close similarity to coelomate spiralians. Dev Biol 204:111–123

    Article  CAS  PubMed  Google Scholar 

  • Bresslau E (1904) Beitraege zur Entwicklungsgeschichte der Turbellarien. I. Die Entwicklung der Rhabdocoelen und Alloiocoelen. Z Wiss Zool 76:213–332

    Google Scholar 

  • Cebria F, Kobayashi C, Umesono Y, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Itoh M, Taira M, Sanchez Alvarado A, Agata K (2002) FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419:620–624

    Article  CAS  PubMed  Google Scholar 

  • Costello DP, Henley C (1976) Spiralian development: a perspective. Am Zool 16:277–291

    Google Scholar 

  • Curini-Galletti M (2001) The Proseriata. In: Littlewood D, Bray RA (eds) Interrelationships of the platyhelminthes. Taylor & Francis, London, pp 41–48

  • Doe DA (1981) Comparative ultrastructure of the pharynx simplex in Turbellaria. Zoomorphology 97:133–192

    Google Scholar 

  • Ehlers U (1985) Das phylogenetische System der Platyhelminthes. Fischer, Jena

  • Eisenman EA, Alfert M (1982) A new fixation procedure for preserving the ultrastructure of marine invertebrate tissues. J Microsc 125:117–120

    Google Scholar 

  • Gehlen M, Lochs A (1990) Quantification of characters from live observations in meiobenthic Turbellaria-Macrostomida. Cah Biol Mar 31:463–472

    Google Scholar 

  • Giesa S (1966) Die Embryonalentwicklung von Monocelis fusca Oersted (Turbellaria, Proseriata). Z Morphol Oekol Tiere 57:137–230

    Google Scholar 

  • Guillard R, Ryther LH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve). Gran Can J Microbiol 8:229–239

    CAS  Google Scholar 

  • Hartenstein V, Ehlers U (2000) The embryonic development of the rhabdocoel flatworm Mesostoma lingua. Dev Genes Evol 210:399–415

    CAS  PubMed  Google Scholar 

  • Hartenstein V, Jones M (2003) The embryonic development of the bodywall and nervous system of the cestode flatworm Hymenolepis diminuta. Cell Tissue Res 311:427–435

    PubMed  Google Scholar 

  • Henry JQ, Martindale MQ (1998) Conservation of the spiralian developmental program: cell lineage of the nemertean, Cerebratulus lacteus. Dev Biol 201:253–269

    CAS  PubMed  Google Scholar 

  • Henry JQ, Martindale MQ, Boyer BC (2000) The unique developmental program of the acoel flatworm, Neochildia fusca. Dev Biol 220:285–295

    Article  CAS  PubMed  Google Scholar 

  • Hooge MD (2001) Evolution of body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). J Morphol 249:171–194

    Article  CAS  PubMed  Google Scholar 

  • Jondelius U, Norén M, Hendelberg J (2001) The Prolecithophora. In: Littlewood D, Bray RA (eds) Interrelationships of the platyhelminthes. Taylor & Francis, London, pp 74–80

  • Jondelius U, Ruiz-Trillo I, Baguñà J, Riutort M (2002) The nemertodermatid flatworms are basal bilaterians and not members of the Platyhelminthes. Zool Scripta 31:201–215

    Article  Google Scholar 

  • Ladurner P, Rieger R (2000) Embryonic muscle development of Convoluta pulchra (Turbellaria-Acoelomorpha, Platyhelminthes). Dev Biol 222:359–375

    Article  CAS  PubMed  Google Scholar 

  • Ladurner P, Rieger R, Baguñà J (2000) Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp.: a bromodeoxyridine analysis. Dev Biol 226:231–241

    Article  CAS  PubMed  Google Scholar 

  • Ladurner P, Schärer L, Salvenmoser W, Rieger R (2004) A new species of the genus Macrostomum (Rhabditophora, Macrostomorpha) from the northern Adriatic: a new model system for the lower Bilateria. Zool Scripta (in press)

  • Littlewood DT, Olson PD (2001) Small subunit rDNA and the Platyhelminthes: signal, noise, conflict and compromise. In: Littlewood DT, Bray RA (eds)Interrelationships of the platyhelminthes. Taylor & Francis, London, pp 262–278

  • Littlewood DT, Olson PD, Telford MJ, Herniou EA, Riutort M (2001) Elongation factor 1-alpha sequences alone do not assist in revolving the position of the acoela within the Metazoa. Mol Biol Evol 18:437–442

    CAS  PubMed  Google Scholar 

  • Luther A (1960) Die Turbellarien Ostfennoskandiens. I. Acoela, Catenulida, Macrostomida, Lecithoepitheliata, Prolecithophora und Proseriata. Fauna Fenn 7:1–155

    Google Scholar 

  • Ogawa K, Ishihara S, Saito Y, Mineta K, Nakazawa M, Ikeo K, Gojobori T, Watanabe K, Agata K (2002) Induction of a noggin-like gene by ectopic DV interaction during planarian regeneration. Dev Biol 250:59–70

    Article  CAS  PubMed  Google Scholar 

  • Papi F (1953) Beitraege zur Kenntnis der Macrostomiden (Turbellarien). Acta Zool Fenn 78:1–32

    Google Scholar 

  • Peter R, Ladurner P, Rieger R (2001) The role of stem cell strategies in coping with environmental stress and choosing between alternative reproductive modes: Turbellaria rely on a single cell type to maintain individual life and propagate species. Mar Ecol 22:35–45

    Article  Google Scholar 

  • Peter R, Gschwentner R, Schürmann W, Rieger R, Ladurner P (2004) The significance of stem cells in free-living flatworms: one common source for all cells in the adult. J Appl Biomed 2:21–35

    Google Scholar 

  • Pineda D, Gonzalez J, Callaerts P, Ikeo K, Gehring WJ, Salo E (2000) Searching for the prototypic eye genetic network: sine oculis is essential for eye regeneration in planarians. Proc Natl Acad Sci USA 97:4525–4529

    Article  CAS  PubMed  Google Scholar 

  • Pineda D, Rossi L, Batistoni R, Salvetti A, Marsal M, Gremigni V, Falleni A, Gonzalez-Linares J, Deri P, Salo E (2002) The genetic network of prototypic planarian eye regeneration is Pax6 independent. Development 129:1423–1434

    CAS  PubMed  Google Scholar 

  • Ramachandra NB, Gates R, Ladurner P, Jacobs D, Hartenstein V (2002) Neurogenesis in the primitive bilaterian Neochildia. I. Normal development and isolation of genes controlling neural fate. Dev Genes Evol 212:55–69

    Article  CAS  PubMed  Google Scholar 

  • Reisinger E (1923) Turbellaria. In: Schulze (ed) Biologie der Tiere Deutschlands. pp 1–64

  • Reisinger E, Cichocki I, Erlach R, Szyskowitz T (1974a) Ontogenetische Studien an Turbellarien: ein Beitrag zur Evolution der Dotterverarbeitung im ektolezithalen Ei, 1. Teil 1. Z Zool Syst Evolutionsforsch 12:161–195

    Google Scholar 

  • Reisinger E, Cichocki I, Erlach R, Szyskowitz T (1974b) Ontogenetische Studien an Turbellarien: ein Beitrag zur Evolution der Dotterverarbeitung im ektolezithalen Ei, 2. Teil 1. Z Zool Syst Evolutionsforsch 12:241–278

    Google Scholar 

  • Reiter D, Boyer B, Ladurner P, Mair G, Salvenmoser W, Rieger R (1996) Differentiation of the bodywall musculature in Macrostomum hystricinum marinum and Hoploplana inquilina (Platyhelminthes), as models for muscle development in lower Spiralia. Roux’s Arch Dev Biol 205:410–423

  • Reuter M, Halton DW (2001) Comparative neurobiology of Platyhelminthes. In: Littlewood D, Bray RA (eds) Interrelationships of the platyhelminthes. Taylor & Francis, London, pp 231–238

  • Rieger RM (1977) The relationship of character variability and morphological complexity in copulatory structures of Turbellaria-Macrostomida and -Haplopharyngida. Mikrofauna Meeresbd 61:197–216

    Google Scholar 

  • Rieger RM (1998) 100 Years of research on Turbellaria. Hydrobiologia 383:1–27

    Article  Google Scholar 

  • Rieger RM (2001) Phylogenetic systematics of the Macrostomorpha. In: Littlewood D, Bray RA (eds) Interrelationships of the platyhelminthes. Taylor & Francis, London, pp 28–38

  • Rieger RM, Tyler S, Smith JPS III, Rieger GE (1991) Platyhelminthes: Turbellaria. In: Harrison FW, Bogitsh BJ (eds) Microscopic anatomy of invertebrates, vol 3. Wiley-Liss, New York

  • Rieger RM, Salvenmoser W, Legniti A, Tyler S (1994) Phalloidin-rhodamine preparations of Macrostomum hystricinum marinum (Platyhelminthes); morphology and postembryonic development of the musculature. Zoomorphology 114:133–147

    Google Scholar 

  • Rohde K (2001) Protonephridia as phylogenetic characters. In: Littlewood D, Bray RA (eds) Interrelationships of the Platyhelminthes. Taylor & Francis, London, pp 203–216

  • Salo E, Pineda D, Marsal M, Gonzalez J, Gremigni V, Batistoni R (2002) Genetic network of the eye in Platyhelminthes: expression and functional analysis of some players during planarian regeneration. Gene 287:67–74

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Alvarado A, Newmark PA (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci USA 96:5049–5054

    Article  PubMed  Google Scholar 

  • Sanchez-Alvarado A, Newmark PA, Robb SM, Juste R (2002) The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development 129:5659–5665

    Article  PubMed  Google Scholar 

  • Seilern-Aspang F (1957) Die Entwicklung von Macrostomum appendiculatum (Fabricius). Zool Jahrb Anat 76:311–330

    Google Scholar 

  • Surface FM (1908) The early development of a polyclad, Planocera inquilina Wh. Proc Acad Nat Sci Philadelphia 59:514–559

    Google Scholar 

  • Thomas MB (1986) Embryology of the Turbellaria and its phylogenetic significance. Hydrobiologia 132:105–115

    Google Scholar 

  • Tyler S (1981) Development of cilia in embryos of the turbellarian Macrostomum. Hydrobiologia 84:231–239

    Google Scholar 

  • Tyler S (1984) Turbellarian platyhelminths. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument. Springer, Berlin Heidelberg New York, pp 112–113

  • Tyler S (1988) The role of function in determination of homology and convergence—examples from invertebrate adhesive organs. Fortschr Zool 36:331–347

    Google Scholar 

  • Tyler S (2001) The early worm—origins and relationships of the lower flatworms. In: Littlewood D, Bray RA (eds) Interrelationships of the platyhelminthes. Taylor & Francis, London, pp 3–12

  • Verdonk NH, van den Biggelaar JAM (1983) Early development and the formation of the germ layers. In: Verdonk NH, van den Biggelaar J, Tompa AS (eds) The Mollusca. Academic, New York, pp 91–122

  • Xylander W (2004) Neodermata. In: Westheide W, Rieger R (eds) Spezielle Zoologie. Spektrum Akademischer Verlag, Heidelberg, pp 230–258

  • Younossi-Hartenstein A, Hartenstein V (2000a) Comparative approach to developmental analysis: the case of the dalyellid flatworm, Gieysztoria superba. Int J Dev Biol 44:499–506

    CAS  PubMed  Google Scholar 

  • Younossi-Hartenstein A, Hartenstein V (2000b) The embryonic development of the polyclad flatworm Imgogine mcgrathi. Dev Genes Evol 210:383–398

    CAS  PubMed  Google Scholar 

  • Younossi-Hartenstein A, Hartenstein V (2001) The embryonic development of the temnocephalid flatworms Craspedella pedum and Diceratocephala sp. Cell Tissue Res 304:295–310

    CAS  PubMed  Google Scholar 

  • Younossi-Hartenstein A, Ehlers U, Hartenstein V (2000) Embryonic development of the nervous system of the rhabdocoel flatworm Mesostoma lingua (Abildgaard, 1789). J Comp Neurol 416:461–476

    Article  CAS  PubMed  Google Scholar 

  • Zalokar M, Erk I (1977) Phase-partition fixation and staining of Drosophila eggs. Stain Technol 52:89–95

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dennis Montoya, Willi Salvenmoser, and Birgitta Sjostrand for their technical support. This work was supported by NSF grant IBN-0110718 to V.H., FWF grants P15204 and 16618 to R.M.R. and the Ruth L. Kirschstein National Research Service Award GM07185 to J.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Hartenstein.

Additional information

Edited by J. Campos-Ortega

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, J., Nallur, R., Ladurner, P. et al. The embryonic development of the flatworm Macrostomum sp.. Dev Genes Evol 214, 220–239 (2004). https://doi.org/10.1007/s00427-004-0406-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-004-0406-4

Keywords

Navigation