Skip to main content
Log in

Production and characterisation of cell- and tissue-specific monoclonal antibodies for the flatworm Macrostomum sp.

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Monoclonal antibodies (mABs) against various cell types of the basal free-living flatworm Macrostomum sp. were produced by immunising Balb/c mice with cell suspensions of disintegrated animals. We identified 360 positive supernatants with specific staining of various tissues, cell types, patterns or structures. Here we report immunocytochemical characterisation, histological stainings and isotyping of 11 mABs specific for muscle cells (MMu-1, MMu-2, MMu-3, MMu-4), digestive and prostate glands (MDr-1 and MDr-2, MPr-1), epidermal cells (MEp-1), the ventral nerve cord including neuron clusters (MNv-1), gastrodermal cells (MDa-1) and spermatids (MSp-1). Confocal microscopy, histological techniques, electron microscopy and immunoblotting were applied to demonstrate stainings in juveniles, adults, starved or well-fed animals. Considering the current lack of specific markers the obtained mABs will be particularly helpful studying embryonic and postembryonic development, pattern formation, cell differentiation, regeneration and reproductive allocation in Macrostomum sp., and possibly other basal flatworms. The small size, ease of culturing, short generation time, transparency and the basal phylogenetic position specify Macrostomum sp. as a suitable model organism for comparative analyses within Platyhelminthes and to Drosophila and C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–E
Fig. 3A–F
Fig. 4A–E
Fig. 5A–D
Fig. 6A–H
Fig. 7A–G
Fig. 8A–G
Fig. 9

Similar content being viewed by others

References

  • Agata K (2002) Molecular and cellular approaches to planarian regeneration. Zool Sci 19:1391–1392

    Article  PubMed  Google Scholar 

  • Agata K, Tanaka T, Kobayashi C, Kato K, Saitoh Y (2003) Intercalary regeneration in planarians. Dev Dyn 226:308–316

    Article  CAS  PubMed  Google Scholar 

  • Akesson B, Gschwentner R, Hendelberg J, Ladurner P, Muller J, Rieger R (2001) Fission in Convolutriloba longifissura: asexual reproduction in acoelous turbellarians revisited. Acta Zool 82:231–239

    Article  Google Scholar 

  • Asano Y, Yoshida A, Isozaki N, Ishida S (2001) Production of intestine-specific monoclonal antibody and interspecific cross-reaction in triclads and polyclads. Belg J Zool 131:137–141

    Google Scholar 

  • Baguñá J (1981) Planarian neoblasts. Nature 290:14–15

    Google Scholar 

  • Baguñá J, Salo E, Auladell C (1989) Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107:77–86

    Google Scholar 

  • Baguñá J, Salo E, Romero R, Garciafernandez J, Bueno D, Munozmarmol AM, Bayascasramirez JR, Casali A (1994) Regeneration and pattern-formation in planarians: cells, molecules and genes. Zool Sci 11:781–795

    Google Scholar 

  • Bueno D, Baguñá J, Romero R (1997) Cell-, tissue-, and position-specific monoclonal antibodies against the planarian Dugesia (Girardia) tigrina. Histochem Cell Biol 107:139–149

    Article  CAS  PubMed  Google Scholar 

  • Cebria F, Romero R (2001) Body-wall muscle restoration dynamics are different in dorsal and ventral blastemas during planarian anterior regeneration. Belg J Zool 131:111–115

    Google Scholar 

  • Cebria F, Vispo M, Newmark P, Bueno D, Romero R (1997) Myocyte differentiation and body wall muscle regeneration in the planarian Girardia tigrina. Dev Genes Evol 207:306–316

    Article  CAS  Google Scholar 

  • Cebria F, Bueno D, Reigada S, Romero R (1999) Intercalary muscle cell renewal in planarian pharynx. Dev Genes Evol 209:249–253

    Article  CAS  PubMed  Google Scholar 

  • Crandall IE, Newell PC (1989) Changes in cell surface glycoproteins during Dictyostelium development analysed using monoclonal antibodies. Development 107:87–94

    CAS  PubMed  Google Scholar 

  • Dunne JF, Javois LC, Huang LW, Bode HR (1985) A subset of cells in the nerve net of Hydra oligactis defined by a monoclonal antibody: its arrangement and development. Dev Biol 109:41–53

    CAS  PubMed  Google Scholar 

  • Goetinck S, Waterston RH (1994) The Caenorhabditis elegans Unc-87 protein is essential for maintenance, but not assembly, of bodywall muscle. J Cell Biol 127:71–78

    Article  CAS  PubMed  Google Scholar 

  • Gschwentner R, Ladurner P, Rieger R (2001) Stem cells in a basal bilaterian: S-phase and mitotic cells in Convolutriloba longifissura (Acoela, Platyhelminthes). Cell Tissue Res 304:401–408

    Article  CAS  PubMed  Google Scholar 

  • Gschwentner R, Mueller J, Ladurner P, Rieger R, Tyler S (2003) Unique patterns of longitudinal body-wall musculature in the Acoela (Plathelminthes): the ventral musculature of Convolutriloba longifissura. Zoomorphology 122:87–94

    Google Scholar 

  • Gustafsson MK (1976) Studies on cytodifferentiation in the neck region of Diphyllobothrium dendriticum Nitzsch, 1824 (Cestoda, Pseudophyllidea). Z Parasitenkd 50:323–329

    CAS  PubMed  Google Scholar 

  • Gustafsson MK, Eriksson K (1992) Never ending growth and a growth factor. I. Immunocytochemical evidence for the presence of basic fibroblast growth factor in a tapeworm. Growth Factors 7:327–334

    CAS  PubMed  Google Scholar 

  • Henry JQ, Martindale MQ, Boyer BC (2000) The unique developmental program of the acoel flatworm, Neochildia fusca. Dev Biol 220:285–295

    Article  CAS  PubMed  Google Scholar 

  • Hooge MD (2001) Evolution of body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). J Morphol 249:171–194

    Article  CAS  PubMed  Google Scholar 

  • Hooge M, Tyler S (1999) Body-wall musculature of Praeconvoluta tornuva n.sp., and the use of muscle patterns in taxonomy of acoel turbellarians. Invertebr Biol 118:8–17

    Google Scholar 

  • Itoh M, Kimura J, Tsukise A, Okano M (1994) Immunohistochemical characterization of a stage-specific antigen during oogenesis and spermatogenesis recognized with monoclonal antibody. Cell Biol Int 18:819–827

    Article  CAS  PubMed  Google Scholar 

  • Javois LC (1990) Patterning of the head in Hydra as visualized by a monoclonal antibody. III. The dynamics of head regeneration. J Exp Zool 254:155–164

    CAS  PubMed  Google Scholar 

  • Javois LC, Wood RD, Bode HR (1986) Patterning of the head in Hydra as visualized by a monoclonal antibody. I. Budding and regeneration. Dev Biol 117:607–618

    Article  CAS  PubMed  Google Scholar 

  • Javois LC, Bode PM, Bode HR (1988) Patterning of the head in Hydra as visualized by a monoclonal antibody. II. The initiation and localization of head structures in regenerating pieces of tissue. Dev Biol 129:390–399

    CAS  PubMed  Google Scholar 

  • Kato K, Orii H, Watanabe K, Agata K (1999) The role of dorsoventral interaction in the onset of planarian regeneration. Development 126:1031–1040

    CAS  PubMed  Google Scholar 

  • Kobayashi C, Kobayashi S, Orii H, Watanabe K, Agata K (1998) Identification of two distinct muscles in the planarian Dugesia japonica by their expression of myosin heavy chain genes. Zool Sci 15:861–869

    CAS  Google Scholar 

  • Kobayashi C, Watanabe K, Agata K (1999) The process of pharynx regeneration in planarians. Dev Biol 211:27–38

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Kajiura-Kobayashi H, Nagahama Y (2000) Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mech Dev 99:139–142

    Article  CAS  PubMed  Google Scholar 

  • Kubota Y, Morita T, Ito K (1996) New monoclonal antibody (4E9R) identifies mouse neural crest cells. Dev Dyn 206:368–378

    Article  CAS  PubMed  Google Scholar 

  • Ladurner P, Rieger R (2000) Embryonic muscle development of Convoluta pulchra (Turbellaria-Acoelomorpha, Platyhelminthes). Dev Biol 222:359–375

    Article  CAS  PubMed  Google Scholar 

  • Ladurner P, Mair GR, Reiter D, Rieger RM (1997) The serotonergic nervous system of two macrostomid species: recent or ancient divergence? Invertebr Biol 3:178–191

    Google Scholar 

  • Ladurner P, Rieger R, Baguna J (2000) Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp.: a bromodeoxyuridine analysis. Dev Biol 226:231–241

    Article  CAS  PubMed  Google Scholar 

  • Littlefield CL, Dunne JF, Bode HR (1985) Spermatogenesis in Hydra oligactis. I. Morphological description and characterization using a monoclonal antibody specific for cells of the spermatogenic pathway. Dev Biol 110:308–320

    CAS  PubMed  Google Scholar 

  • Mair GR, Maule AG, Day TA, Halton DW (2000) A confocal microscopical study of the musculature of adult Schistosoma mansoni. Parasitology 121:163–170

    Article  PubMed  Google Scholar 

  • Mazzolini L, Vaeck M, van Montagu M (1989) Conserved epitopes on plant H1 histones recognized by monoclonal antibodies. Eur J Biochem 178:779–787

    CAS  PubMed  Google Scholar 

  • Milstein C (1999) The hybridoma revolution: an offshoot of basic research. Bioessays 21:966–973

    Article  CAS  PubMed  Google Scholar 

  • Morris J, Ramachandra NB, Ladurner P, Egger B, Rieger R, Hartenstein V (2004) The embryonic development of the flatworm Macrostomum sp. Dev Genes Evol 214:220–239

    Article  PubMed  Google Scholar 

  • Newmark PA, Sanchez AA (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153

    Article  CAS  PubMed  Google Scholar 

  • Newmark PA, Sanchez AA (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3:210–219

    Article  CAS  PubMed  Google Scholar 

  • Nimeth K, Mahlknecht M, Mezzanato A, Peter R, Rieger R, Ladurner P (2004) Stem cell dynamics during growth, feeding and starvation in the basal flatworm Macrostomum sp. (Platyhelminthes). Dev Dyn 230:91–99

    Article  PubMed  Google Scholar 

  • Orii H, Ito H, Watanabe K (2002) Anatomy of the planarian Dugesia japonica. I. The muscular system revealed by antisera against myosin heavy chains. Zool Sci 19:1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Patel NH (1994) Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes. Methods Cell Biol 44:445–487

    CAS  PubMed  Google Scholar 

  • Reiter D, Boyer B, Ladurner P, Mair G, Salvenmoser W, Rieger R (1996) Differentiation of the body-wall musculature in Macrostomum hystricinum marinum and Hoploplana inquilina (Plathelminthes), as models for muscle development in lower Spiralia. Roux’s Arch Dev Biol 205:410–423

  • Rieger RM, Ladurner P (2003) The significance of muscle cells for the origin of mesoderm in Bilateria. Integrative Comp Biol 43:47–54

    Google Scholar 

  • Rieger RM, Gehlen M, Haszprunar G, Holmlund M, Legniti A, Salvenmoser W, Tyler S (1988) Laboratory cultures of marine Macrostomida (Turbellaria). Fortschr Zool 36:523

    Google Scholar 

  • Rieger RM, Salvenmoser W, Legniti A, Tyler S (1994) Phalloidin-rhodamine preparations of Macrostomum hystricinum marinum (Plathelminthes): morphology and postembryonic development of the musculature. Zoomorphology 114:133–147

    Article  Google Scholar 

  • Romero R, Fibla J, Bueno D, Sumoy L, Soriano M, Baguñá J (1991) Monoclonal antibodies as markers of specific cell types and regional antigens in the freshwater planarian Dugesia(G)tigrina. Hydrobiologia 227:73–79

    Article  Google Scholar 

  • Salo E, Baguna J (2002) Regeneration in planarians and other worms: new findings, new tools, and new perspectives. J Exp Zool 292:528–539

    Article  CAS  PubMed  Google Scholar 

  • Salvenmoser W, Riedl D, Ladurner P, Rieger R (2001) Early steps in the regeneration of the musculature in Macrostomum sp. (Macrostomorpha, Platyhelminthes). Belg J Zool 131(suppl 1):105–110

    Google Scholar 

  • Sanchez AA (2000) Regeneration in the metazoans: why does it happen? Bioessays 22:578–590

    Article  CAS  PubMed  Google Scholar 

  • Sanchez AA (2003) The freshwater planarian Schmidtea mediterranea: embryogenesis, stem cells and regeneration. Curr Opin Genet Dev 13:438–444

    Article  PubMed  Google Scholar 

  • Sanchez AA, Newmark PA (1998) The use of planarians to dissect the molecular basis of metazoan regeneration. Wound Repair Regen 6:413–420

    Article  PubMed  Google Scholar 

  • Saumweber H (1991) The use of monoclonal antibody libraries. Methods Cell Biol 35:229–252

    CAS  PubMed  Google Scholar 

  • Schärer L, Ladurner P (2003) Phenotypically plastic adjustment of sex allocation in a simultaneous hermaphrodite. Proc R Soc Lond Ser B Biol Sci 270:935–941

    Article  Google Scholar 

  • Schärer L, Ladurner P, Rieger RM (2004a) Bigger testes do work more: experimental evidence that testis size reflects testicular cell proliferation activity in the marine invertebrate, the free-living flatworm Macrostomum sp. Behav Ecol Sociobiol 56:420–425

    Google Scholar 

  • Schärer L, Joss G, Sandner P (2004b) Mating behaviour of the marine turbellarian Macrostomum sp.: these worms suck. Mar Biol 145:373–380

    Google Scholar 

  • Shinozawa T, Kawarada H, Takezaki K, Tanaka H, Inoue K (1995) Preparation of monoclonal-antibodies against planarian organs and the effect of fixatives. Hydrobiologia 305:255–257

    Article  Google Scholar 

  • Shirakawa T, Sakurai A, Inoue T, Sasaki K, Nishimura Y, Ishida S, Teshirogi W (1991) Production of cell-specific and tissue-specific monoclonal antibodies in the freshwater planarian Phagocata vivida. Hydrobiologia 227:81–91

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New York

  • Tyler S (2003) Epithelium: the primary building block for metazoan complexity. Integrative Comp Biol 43:55–63

    Google Scholar 

  • Tyler S, Hyra GS (1998) Patterns of musculature as taxonomic characters for the Turbellaria Acoela. Hydrobiologia 383:51–59

    Article  Google Scholar 

  • Vispo M, Cebria F, Bueno D, Carranza S, Newmark P, Romero R (1996) Regionalisation along the anteroposterior axis of the freshwater planarian Dugesia(Girardia)tigrina by TCEN49 protein. Int J Dev Biol Suppl 1:S209–S210

    Google Scholar 

  • Yaross MS, Westerfield J, Javois LC, Bode HR (1986) Nerve cells in Hydra: monoclonal antibodies identify two lineages with distinct mechanisms for their incorporation into head tissue. Dev Biol 114:225–237

    CAS  PubMed  Google Scholar 

  • Yu SM, Westfall JA, Dunne JF (1985) Light and electron microscopic localization of a monoclonal antibody in neurons in situ in the head region of Hydra. J Morphol 184:183–193

    CAS  PubMed  Google Scholar 

  • Yu SM, Westfall JA, Dunne JF (1986) Use of a monoclonal antibody to classify neurons isolated from the head region of Hydra. J Morphol 188:79–90

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Peter Berger for the support and suggestions on the hybridoma technique and Bernd Pelster for the access to the confocal microscope. We thank Dr. Hermann Dietrich for support with immunisations and Renate Weiler-Görz and Dr. Alexandra Lusser for help with the immunoblot assays. This work was supported by FWF grants P13060 and P15204. L.S is supported by a Liese-Meitner fellowship (FWF, Austria). P.L. is supported by an APART fellowship (number 10841) of the Austrian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ladurner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladurner, P., Pfister, D., Seifarth, C. et al. Production and characterisation of cell- and tissue-specific monoclonal antibodies for the flatworm Macrostomum sp.. Histochem Cell Biol 123, 89–104 (2005). https://doi.org/10.1007/s00418-004-0722-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0722-9

Keywords

Navigation