Skip to main content

Advertisement

Log in

The embryonic development of the triclad Schmidtea polychroa

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Triclad flatworms are well studied for their regenerative properties, yet little is known about their embryonic development. We here describe the embryonic development of the triclad Schmidtea polychroa, using histological and immunocytochemical analysis of whole-mount preparations and sections. During early cleavage (stage 1), yolk cells fuse and enclose the zygote into a syncytium. The zygote divides into blastomeres that dissociate and migrate into the syncytium. During stage 2, a subset of blastomeres differentiate into a transient embryonic epidermis that surrounds the yolk syncytium, and an embryonic pharynx. Other blastomeres divide as a scattered population of cells in the syncytium. During stage 3, the embryonic pharynx imbibes external yolk cells and a gastric cavity is formed in the center of the syncytium. The syncytial yolk and the blastomeres contained within it are compressed into a thin peripheral rind. From a location close to the embryonic pharynx, which defines the posterior pole, bilaterally symmetric ventral nerve cord pioneers extend forward. Stage 4 is characterized by massive proliferation of embryonic cells. Large yolk-filled cells lining the syncytium form the gastrodermis. During stage 5 the external syncytial yolk mantle is resorbed and the embryonic cells contained within differentiate into an irregular scaffold of muscle and nerve cells. Epidermal cells differentiate and replace the transient embryonic epidermis. Through stages 6–8, the embryo adopts its worm-like shape, and loosely scattered populations of differentiating cells consolidate into structurally defined organs. Our analysis reveals a picture of S. polychroa embryogenesis that resembles the morphogenetic events underlying regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abeloos M (1930) Recherches expérimentales sur la croissance et la régénération chez les planaires. Bull Biol Fr Belg 64(1)

  • Agata K, Watanabe K (1999) Molecular and cellular aspects of planarian regeneration. Semin Cell Dev Biol 10:377–383

    CAS  PubMed  Google Scholar 

  • Ax P (1995) Multicellular animals, vol 1. Fischer, Stuttgart

  • Baguñà J (1974) A demonstration of a peripheral and a gastrodermal nervous plexus in planarians. Zool Anz 193(3/4):240–244

    Google Scholar 

  • Baguñà J, Boyer CB (1990) Descriptive and experimental embryology of the turbellaria: present knowledge, open questions and future trends. In: Marthy HJ (ed) Experimental embryology, in aquatic plants and animals. Plenum, New York, pp 95–128

    Google Scholar 

  • Baguñà J, Saló E, Auladell C (1989) Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107:77–86

    Google Scholar 

  • Bely A, Wray G (2001) Evolution of regeneration and fission in annelids: insights from engrailed- and orthodenticle-class gene expression. Development 128:2781–2791

    CAS  PubMed  Google Scholar 

  • Bennazzi M, Gremigni V (1982) Developmental biology of triclad turbellarians (Planaria). In: Harrison FW, Cowden RR (eds) Developmental biology of freshwater invertebrates. Liss, New York, pp 151–211

    Google Scholar 

  • Bresslau E (1904) Beitraege zur Entwicklungsgeschichte der Turbellarien I. Die Entwicklung der Rhabdocoelen und Alloiocoelen. Z Wiss Zool 76:213–332

    Google Scholar 

  • Bueno D, Fernández-Rodríguez J, Cardona A, Hernández-Hernández V, Romero R (2002) A novel invertebrate trophic factor related to invertebrate neurotrophins is involved in planarian body regional survival and asexual reproduction. Dev Biol 252:188–201

    CAS  PubMed  Google Scholar 

  • Cebrià F, Vispo M, Newmark P, Bueno D, Romero R (1997) Myocyte differentiation and body wall muscle regeneration in the planarian Girardia tigrina. Dev Genes Evol 207:306–316

    Article  CAS  Google Scholar 

  • Cebrià F, Bueno D, Reigada S, Romero R (1999) Intercalary muscle cell renewal in planarian pharynx. Dev Genes Evol 209(4):249–253

    Article  CAS  PubMed  Google Scholar 

  • Cebrià F, Kudome T, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Agata K (2002a) The expression of neural-specific genes reveals the structural and molecular complexity of the planarian central nervous system. Mech Dev 116:199–204

    PubMed  Google Scholar 

  • Cebrià F, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Agata K (2002b) Dissecting planarian central nervous system regeneration by the expression of neural-specific genes. Dev Growth Differ 44(2):135–146

    PubMed  Google Scholar 

  • Cebrià F, Kobayashi C, Umesono Y, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Itoh M, Taira M, Sanchez Alvarado A, Agata K (2002c) FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419(6907):620–624

    Google Scholar 

  • Domenici L, Gremigni V (1974) Electron microscopical and cytochemical study of vitelline cells in the fresh-water triclad Dugesia lugubris sl. II. Origin and distribution of reserve materials. Cell Tissue Res 152:219–228

    CAS  PubMed  Google Scholar 

  • Ehlers U (1985) Das phylogenetische System der Plathelminthes. Fischer, Stuttgart

    Google Scholar 

  • Fulinski B (1916) Die Keimblätterbildung bei Dendrocoelum lacteum Oerst. Zool Anz 47:380–400

    Google Scholar 

  • Giesa S (1966) Die Embryonalentwicklung von Monocelis fusca Oersted (Turbellaria, Proseriata). Z Morphol Oekol Tiere 57:137–230

    Google Scholar 

  • González-Estévez C, Saló E (2001) GtDap-1: a molecular marker to follow apoptosis in planarian regeneration (abstract). Int J Dev Biol 45(suppl 1):S180

    Google Scholar 

  • Gonzalez-Estevez CM, Momose T, Gehring WJ, Salo E (2003) Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. Proc Natl Acad Sci USA 100(24):14046–14051

    CAS  PubMed  Google Scholar 

  • Gremigni V (1988) A comparative ultrastructural study of homocellular and heterocellular female gonads in free living Platyhelminthes-Turbellaria. Fortschr Zool 36:245–261

    Google Scholar 

  • Gremigni V, Nigro M, Puccinelli I (1982) Evidence of male germ cell redifferentiation into female germ cells in planarian regeneration. J Embryol Exp Morphol 70:29–36

    CAS  PubMed  Google Scholar 

  • Hartenstein V, Ehlers U (2000) The embryonic development of the rhabdocoel flatworm Mesostoma lingua (Abildgaard, 1789). Dev Genes Evol 210:399–415

    CAS  PubMed  Google Scholar 

  • Hase S, Kobayashi K, Koyanagi R, Hoshi M, Matsumoto M (2003) Transcriptional pattern of a novel gene, expressed specifically after the point-of-no-return during sexualization, in Planaria. Dev Genes Evol 212(12):585–592

    CAS  PubMed  Google Scholar 

  • Hooge MD (2001) Evolution of body-wall musculature in Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). J Morphol 249:171–194

    Article  CAS  PubMed  Google Scholar 

  • Hyman LH (1951) The invertebrates: Platyhelminthes and Rhynchocoela, vol 2. McGraw-Hill, New York

    Google Scholar 

  • Kato K, Orii H, Watanabe K, Agata K (2001) Dorsal and ventral positional cues required for the onset of planarian regeneration may reside in differentiated cells. Dev Biol 233:109–121

    CAS  PubMed  Google Scholar 

  • Koscielski B (1966) Cytological and cytochemical investigations on the embryonic development of Dendrocoelum lacteum OF Müller. Zool Pol 16(1):83–102

    Google Scholar 

  • Ladurner P, Rieger R (2002) Embryonic muscle development of Convoluta pulchra (Turbellaria-Acoelomorpha, Platyhelminthes). Dev Biol 222:359–375

    Google Scholar 

  • Ladurner P, Rieger R, Baguñà J (2000) Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp: a bromodeoxyuridine analysis. Dev Biol 226:231–241

    Article  CAS  PubMed  Google Scholar 

  • Le Moigne A (1963) Etude du développement embryonnaire de Polycelis nigra (Turbellarié, Triclade). Bull Soc Zool Fr 88:403–422

    Google Scholar 

  • Le Moigne A (1965) Effet des irradiations aux rayons × sur le développement embryonnaire et le pouvoir de régénération à l’éclosion, de Polycelis nigra (Turbellarié, Triclade). CR Acad Sci Paris 260:4627–4629

    CAS  Google Scholar 

  • Le Moigne A (1966) Etude du développement embryonnaire et recherches sur les cellules de régénération chez l’embryon de la Planaire Polycelis nigra (Turbellarié, Triclade). J Embryol Exp Morphol 15:39–60

    CAS  PubMed  Google Scholar 

  • Le Moigne A (1967a) Demonstration with the electron microscope of the persistence of undifferentiated cells during embryonal development of the planarian, Polycelis nigra. CR Acad Sci 265(3):242–244

    CAS  Google Scholar 

  • Le Moigne A (1967b) Etude au microscope èlectronique de la différenciation des principaux types cellulaires chez l’embryon de la Planaire Polycelis nigra. Bull Soc Zool Fr 92:627–628

    Google Scholar 

  • Le Moigne A (1968) Etude au microscope électronique de l’évolution des structures embryonnaires de Planaires après irradiation aux rayons x. J Embryol Exp Morphol 19(2):181–192

    CAS  PubMed  Google Scholar 

  • Mattiesen E (1904) Ein Beitrag zur Embryologie der Süßwasserdendrocoelen. 77:274–361

  • McKanna JA (1968a) Fine structure of the protonephridial system in planaria I flame cells. Z Zellfirsch 92:509–523

    CAS  Google Scholar 

  • McKanna JA (1968b) Fine structure of the protonephridial system in planaria I ductules, collecting ducts, and osmoregulatory cells. Z Zellfirsch 92:524–535

    CAS  Google Scholar 

  • Metschnikoff E (1883) Die Embryologie von Planaria polychroa. Z Wiss Zool 38:331–354

    Google Scholar 

  • Morgan TH (1898) Experimental studies of the regeneration of Planaria maculata. Arch Entwicklungsmech Org 7:364–397

    Google Scholar 

  • Morita M, Best JB (1974) Electron microscopic studies of planarian regeneration. II. Changes in epidermis during regeneration. J Exp Zool 187(3):345–73

    CAS  PubMed  Google Scholar 

  • Morita M, Best JB, Noel J (1969) Electronic microscopic studies of planarian regeneration. I. Fine structure of neoblasts in Dugesia dorotocepha. J Ultrastr Res 27:7–23

    Google Scholar 

  • Morris J, Ramachandra N, Ladurner P, Egger B, Rieger R, Hartenstein V (2004) The embryonic development of the flatworm Macrostomum sp. Dev Genes Evol 214:220–239

    Article  PubMed  Google Scholar 

  • Newmark PA, Sánchez-Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153

    Article  CAS  PubMed  Google Scholar 

  • Newmark PA, Sánchez-Alvarado A (2002) Not your father planarian: a classic model enters the era of functional genomics. Nature 2002(3):210

    Google Scholar 

  • Nimeth T, Mahlknecht M, Mezzanato A, Peter R, Rieger R, Ladurner P (2004) Stem cell dynamics during growth, feeding and starvation in the basal flatworm Macrostomum sp (Platyhelminthes). Dev Dyn 230:91–99

    Article  PubMed  Google Scholar 

  • Ogawa K, Kobayashi C, Hayashi T, Orii F, Watanabe K, Agata K (2002) Planarian fibroblast growth factor receptor homologs expressed in stem cells and cephalic ganglions. Dev Growth Differ 44:191–204

    CAS  PubMed  Google Scholar 

  • Orii H, Mochii M, Watanabe K (2003) A simple “soaking method” for RNA interference in the planarian Dugesia japonica. Dev Genes Evol 213(3):138–141

    CAS  PubMed  Google Scholar 

  • Pineda D, Gonzalez J, Callaerts P, Ikeo K, Gehring WJ, Salo E (2000) Searching for the prototypic eye genetic network: sine oculis is essential for eye regeneration in planarians. Proc Natl Acad Sci USA 97(9):4525–4529

    CAS  PubMed  Google Scholar 

  • Plunket JA, Simmons RB, Walthall WW (1996) Dynamic interactions between nerve and muscle in Caenorhabditis elegans. Dev Biol 175:154–165

    PubMed  Google Scholar 

  • Rasband WS (1997–2004) ImageJ. National Institutes of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/

  • Reddien PW, Sánchez-Alvarado A (2004) Fundamentals of planarian regeneration. An Rev Cell Dev Biol 20:725–757

    CAS  Google Scholar 

  • Reiter D, Boyer B, Ladurner P (1996) Differentiation of the body wall musculature in Macrostomum hystricinum marinum and Hoploplana inquilina (Platyhelminthes) as models for muscle development in lower Spiralia. Roux’s Arch Dev Biol 205(7–8):410–423

    Google Scholar 

  • Reuter M, Palmberg I (1989) Development and differentiation of neuronal subsets in asexually reproducing Microstomum lineare. Immunocytochemistry of 5-HT, RF-amide and SCPB. Histochemistry 91(2):123–131

    CAS  PubMed  Google Scholar 

  • Reuter M, Gustafsson MK, Sahlgren C, Halton DW, Maule AG, Shaw C (1995a) The nervous system of Tricladida. I. Neuroanatomy of Procerodes littoralis (Maricola, Procerodidae): an immunocytochemical study. Invertebr Neurosci 1(2):113–122

    CAS  Google Scholar 

  • Reuter M, Gustafsson MKS, Sheiman I M, Terenina N, Halton DW, Maule AG, Shaw C (1995b) The nervous system of Tricladida. II. Neuroanatomy of Dugesia tigrina (Paludicola, Dugesiidae): an immunocytochemical study. Invertebr Neurosci 1:133–143

    CAS  Google Scholar 

  • Reuter M, Gustafsson MKS, Mäntylä K, Grimmelikhuijzen CJP (1996) The nervous system of Tricladida III. Neuroanatomy of Dendrocoelum lacteum and Polycelis tenuis (Plathelminthes, Paludicola): an immunocytochemical study. Zoomorphology 116:111–122

    Google Scholar 

  • Rieger RM, Tyler S, Smith JPS III, Rieger GE (1991a) Platyhelminthes: Turbellaria. In: Harrison FW, Bogitsh BJ (eds) Microscopic anatomy of invertebrates. Vol 3, Platyhelminthes and Nemertinea. Wiley-Liss, New York, pp 7–140

  • Rieger R, Salvenmoser W, Legniti A, Reindl S, Adam H, Simonsberger P, Tyler S (1991b) Organization and differentiation of the body-wall musculature in Macrostomum (Turbellaria, Macrostomidae). Hydrobiologia 227:119–129

    Google Scholar 

  • Romero R, Baguñà J (1991) Quantitative cellular analysis of growth and reproduction in freshwater planarians (Turbellaria; Tricladida). I. A cellular description of the intact organism. Invertebr Rep Dev 19:157–165

    Google Scholar 

  • Saló E, Pineda D, Marsal M, Gonzalez J, Gremigni V, Batistoni R (2002) Genetic network of the eye in Platyhelminthes: expression and functional analysis of some players during planarian regeneration. Gene 287(1–2):67–74

    PubMed  Google Scholar 

  • Sánchez Alvarado A, Newmark PA (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci USA 96:5049–5054

    PubMed  Google Scholar 

  • Sánchez Alvarado A, Newmark PA, Robb SM, Juste R (2002) The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development 129(24):5659–5665

    PubMed  Google Scholar 

  • Sánchez Alvarado A, Reddien PW, Newmark PA, Nusbaum C (2003) Proposal for the sequencing of a new target genome: white paper for a Planarian Genome Project. The Schmidtea mediterranea Sequencing Consortium

    Google Scholar 

  • Seilern-Aspang F (1958) Entwicklungsgeschichtliche studien an paludicolen tricladen. Roux’ Arch Entwicklungsmech 150:S425–S480

  • Skaer RJ (1965) The origin and continuous replacement of epidermal cells in the planarian Plycelis tenuis (Ijima). J Embryol Exp Morphol 13(1):129–139

    CAS  PubMed  Google Scholar 

  • Stevens M (1904) On the germ cells and the embryology of Planaria simplissima. Proc Natl Acad Sci Philadelphia 56:208–220

    Google Scholar 

  • Thomas MB (1986) Embryology of the Turbellaria and its phylogenetic significance. Hydrobiologia 132:105–115

    Google Scholar 

  • Umesono Y, Watanabe K, Agata K (1997) A planarian orthopedia homolog is specifically expressed in the branch region of both mature and regenerating brain. Dev Growth Differ 39(6):723–727

    CAS  PubMed  Google Scholar 

  • Umesono Y, Watanabe K, Agata K (1999) Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes. Dev Genes Evol 209(1):31–39

    CAS  PubMed  Google Scholar 

  • Watt FM, Hogan BLM (2000) Out of Eden: stem cells and their niches. Science 25:1427–1430

    Google Scholar 

  • Wolff E (1962) Recent researches on the regeneration of planaria. In: Rudnick D (ed.) Regeneration: 20th growth symposium. Ronald Press, New York, pp. 53-84

  • Wray AG (2000) The evolution of embryonic patterning mechanisms in animals. Sem Cell Dev Biol 11:385–393

    CAS  Google Scholar 

  • Younossi-Hartenstein A, Hartenstein V (2000a) Comparative approach to developmental analysis: the case of the dalyellid flatworm, Gieysztoria superba. Int J Dev Biol 44(5):499–506

    CAS  PubMed  Google Scholar 

  • Younossi-Hartenstein A, Hartenstein V (2000b) The embryonic development of the polyclad flatworm Imogine mcgrathi. Dev Genes Evol 210(8–9):383–398

    CAS  PubMed  Google Scholar 

  • Younossi-Hartenstein A, Hartenstein V (2001) The embryonic development of the temnocephalid flatworms Craspedella pedum and Diceratocephala boschmai. Cell Tissue Res 304(2):295–310

    CAS  PubMed  Google Scholar 

  • Younossi-Hartenstein A, Ehlers U, Hartenstein V (2000) Embryonic development of the nervous system of the rhabdocoel flatworm Mesostoma lingua (Abilgaard, 1789). J Comp Neurol 416(4):461–474

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Sjöstrand from the UCLA CHS electron microscopy services and N. Cortadellas, A. García and A. Rivera from UB Serveis Científico-Tècnics (Microscopia Electrònica) for technical assistance in preparing and analyzing TEM samples, and the anonymous reviewers whose constructive comments greatly improved this manuscript. A.C. thanks the Hartenstein lab and the Banerjee lab at UCLA for their kind assistance in every respect, and also the Romero lab at UB for their humor, technical expertise and patience. A.C. is recipient of a FPU grant from the Ministerio de Educación, Ciencia y Deportes, Spain. This research was supported by a grant from BMC2000-0546 (to R.R.) and NSF Grant IBN-0110715 (to V.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Cardona.

Additional information

Edited by D. Tautz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardona, A., Hartenstein, V. & Romero, R. The embryonic development of the triclad Schmidtea polychroa. Dev Genes Evol 215, 109–131 (2005). https://doi.org/10.1007/s00427-004-0455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-004-0455-8

Keywords

Navigation