Skip to main content

Advertisement

Log in

Rust pathogen effectors: perspectives in resistance breeding

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Identification and functional characterization of plant pathogen effectors promise to ameliorate future research and develop effective and sustainable strategies for controlling or containing crop diseases.

Wheat is the second most important food crop of the world after rice. Rust pathogens, one of the major biotic stresses in wheat production, are capable of threatening the world food security. Understanding the molecular basis of plant–pathogen interactions is essential for devising novel strategies for resistance breeding and disease management. Now, it has been established that effectors, the proteins secreted by pathogens, play a key role in plant–pathogen interactions. Therefore, effector biology has emerged as one of the most important research fields in plant biology. Recent advances in genomics and bioinformatics have allowed identification of a large repertoire of candidate effectors, while the evolving high-throughput tools have continued to assist in their functional characterization. The repertoires of effectors have become an important resource for better understanding of effector biology of pathosystems and resistance breeding of crop plants. In recent years, a significant progress has been made in the field of rust effector biology. This review describes the recent advances in effector biology of obligate fungal pathogens, identification and functional analysis of wheat rust pathogens effectors and the potential applications of effectors in molecular plant biology and rust resistance breeding in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali S, Laurie JD, Linning R, Cervantes-Chavez JA, Gaudet D, Bakkeren G (2014) An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution. PLoS Pathog 10:e1004223. https://doi.org/10.1371/journal.ppat.1004223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S (2015) Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112:2543–2549

    CAS  PubMed  Google Scholar 

  • Arora S, Steuernagel B et al (2019) Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat Biotechnol 37:139–143

    CAS  PubMed  Google Scholar 

  • Ayliffe M, Devilla R et al (2011a) Nonhost resistance of rice to rust pathogens. Mol Plant Microbe Interact 24(10):1143–1155

    CAS  PubMed  Google Scholar 

  • Ayliffe M, Jin Y et al (2011b) Determining the basis of nonhost resistance in rice to cereal rusts. Euphytica 179:33–40

    Google Scholar 

  • Bai Y, Pavan S et al (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21(1):30–39

    CAS  PubMed  Google Scholar 

  • Bai S, Liu J et al (2012) Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog 8(6):e1002752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beck M, Heard W et al (2012) The INs and OUTs of pattern recognition receptors at the cell surface. Curr Opin Plant Biol 15:367–374

    CAS  PubMed  Google Scholar 

  • Berger S, Benediktyova Z et al (2007) Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. J Exp Bot 58:797–806

    CAS  PubMed  Google Scholar 

  • Bozkurt TO, Schornack S et al (2011) Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc Natl Acad Sci USA 108:20832–20837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce M, Neugebauer KA et al (2014) Using transcription of six Puccinia triticina races to identify the effective secretome during infection of wheat. Front Plant Sci 4:520

    PubMed  PubMed Central  Google Scholar 

  • Büschges R, Hollricher K et al (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88(5):695–705

    PubMed  Google Scholar 

  • Bushnell WR, Gay JL (1978) Accumulation of solutes in relation to the structure and function of haustoria in powdery mildews. In: Spencer DM (ed) The powdery mildews. Academic Press, London, pp 183–235

    Google Scholar 

  • Caillaud MC, Piquerez SJ (2012) Subcellular localization of the HpaRxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. Plant J 69(2):252–265

    CAS  PubMed  Google Scholar 

  • Caillaud MC, Asai S et al (2013) A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol 11:e1001732

    PubMed  PubMed Central  Google Scholar 

  • Cantu D, Govindarajulu M et al (2011) Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp tritici, the causal agent of wheat stripe rust. PLoS One 6:8. https://doi.org/10.1371/journal.pone.0024230

    Article  CAS  Google Scholar 

  • Cantu D, Segovia V, Maclean D, Bayles R, Chen X, Kamoun S et al (2013) Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genom 14(1):270

    CAS  Google Scholar 

  • Chaudhari P, Ahmed B et al (2014) Effector biology during biotrophic invasion of plant cells. Virulence 5(7):703–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XM, Penman L, Wan AM et al (2010) Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol 32:315–333

    Google Scholar 

  • Chen YE, Cui JM et al (2015) Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage. Front Plant Sci 6:779. https://doi.org/10.3389/fpls.2015.00779

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Upadhyaya NM et al (2017) Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358(6370):1607–1610

    CAS  PubMed  Google Scholar 

  • Chen S, Guo Y et al (2018) Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum. Theor Appl Genet 131(3):625–635

    CAS  PubMed  Google Scholar 

  • Cheng Y, Yao J et al (2015) Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens. Protoplasma 252:1167–1179. https://doi.org/10.1007/s00709-014-0750-9

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Wu K et al (2017) PST ha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f sp tritici, is involved in plant defense suppression and rust pathogenicity. Environ Microbiol 19(5):1717–1729

    CAS  PubMed  Google Scholar 

  • Clancy MJ, Shambaugh ME et al (2002) Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res 30:4509–4518. https://doi.org/10.1093/nar/gkf573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier S, McCallum BD et al (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    CAS  PubMed  Google Scholar 

  • Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256. https://doi.org/10.1038/cdd.2011.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2018.03.009

    Article  PubMed  Google Scholar 

  • Cuomo CA, Bakkeren G et al (2017) Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. G3 7:361–376. https://doi.org/10.1534/g3.116.032797

    Article  CAS  PubMed  Google Scholar 

  • Dagvadorj B, Ozketen AC, Andac A, Duggan C, Bozkurt TO, Akkaya MS (2017) A Puccinia striiformis f. sp. tritici secreted protein activates plant immunity at the cell surface. Sci Rep 7:1141. https://doi.org/10.1038/s41598-017-01100-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean RA, Talbot NJ et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    CAS  PubMed  Google Scholar 

  • Dean R, Van Kan JA et al (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    PubMed  PubMed Central  Google Scholar 

  • Delaunois B, Jeandet P (2014) Uncovering plant–pathogen crosstalk through apoplastic proteomic studies. Front Plant Sci 5:249. https://doi.org/10.3389/fpls.2014.00249

    Article  PubMed  PubMed Central  Google Scholar 

  • Delventhal R, Rajaraman J et al (2017) A comparative analysis of nonhost resistance across the two Triticeae crop species wheat and barley. BMC Plant Biol 17(1):232

    PubMed  PubMed Central  Google Scholar 

  • dit Frey NF, Robatzek S (2009) Trafficking vesicles: pro or contra pathogens? Curr Opin Plant Biol 12:437–443

    Google Scholar 

  • Doehlemann G, Hemetsberger C (2013) Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol 198:1001–1016. https://doi.org/10.1111/nph.12277

    Article  CAS  PubMed  Google Scholar 

  • Dou D, Kale SD et al (2008) RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20:1930–1947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dou D, Kale SD, Liu T et al (2010) Different domains of Phytophthora sojae effector Avr4/6 are recognized by soybean resistance genes Rps4 and Rps6. Mol Plant Microbe Interact 23:425–435. https://doi.org/10.1094/mpmi-23-4-0425

    Article  CAS  PubMed  Google Scholar 

  • Downie RC, Bouvet L, Furuki E, Gosman N, Gardner KA, Mackay IJ, Tan KC (2018) Assessing European wheat sensitivities to Parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3. Front Plant Sci 9:881

    PubMed  PubMed Central  Google Scholar 

  • Du J, Vleeshouwers VG (2014) The do’s and don’ts of effectoromics. Methods Mol Biol 1127:257–268

    PubMed  Google Scholar 

  • Duplessis S, Cuomo CA, Lin YC et al (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA 108:9166–9171. https://doi.org/10.1073/pnas.1019315108

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabro G, Steinbrenner J et al (2011) Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. PLoS Pathog 7(11):e1002348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Doerner P (2012) Genetic and molecular basis of nonhost disease resistance: complex, yes; silver bullet, no. Curr Opin Plant Biol 15(4):400–406

    CAS  PubMed  Google Scholar 

  • Faris JD, Liu Z, Xu SS (2013) Genetics of tan spot resistance in wheat. Theor Appl Genet 126:2197–2217

    CAS  PubMed  Google Scholar 

  • Ferreira RM, Moreira LM et al (2016) Unravelling potential virulence factor candidates in Xanthomonas citri subsp. citri by secretome analysis. Peer J 4:e1734. https://doi.org/10.7717/peerj.1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetch T, Zegeye T, Park R, Hodson D, Wanyera R (2016) Detection of wheat stem rust races TTHSK and PTKTK in the Ug99 race group in Kenya in 2014. Plant Dis 100:1495

    Google Scholar 

  • Feuillet C, Travella S, Stein N et al (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100(25):15253–15258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GCM, Joosten MHAJ, Thomma BPHJ (2011) Interfamily transfer of tomato ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol 156:2255–2265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu D, Uauy C et al (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giesbers AK, Pelgrom AJ et al (2017) Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species. New Phytol 216(3):915–926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gijzen M, Ishmael C, Shrestha SD (2014) Epigenetic control of effectors in plant pathogens. Front Plant Sci 5:638. https://doi.org/10.3389/fpls.2014.00638

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilroy EM, Breen S et al (2011) Presence/absence, differential expression and sequence polymorphisms between PiAVR2 and PiAVR2-like in Phytophthora infestans determine virulence on R2 plants. New Phytol 191:763–776

    CAS  PubMed  Google Scholar 

  • Gout L, Fudal I, Kuhn ML, Blaise F, Eckert M, Cattolico L et al (2006) Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Mol Microbiol 60:67–80

    CAS  PubMed  Google Scholar 

  • Griffe LL (2017) Applying effectoromics and genomics to identify resistance against Rhynchosporium commune in barley. Doctoral dissertation, University of Dundee

  • Gust AA, Brunner F, Nürnberger T (2010) Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 21(2):204–210

    CAS  PubMed  Google Scholar 

  • Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM et al (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398

    CAS  PubMed  Google Scholar 

  • Hein I, Birch PR et al (2009) Progress in mapping and cloning qualitative and quantitative resistance against Phytophthora infestans in potato and its wild relatives. Potato Res 52(3):215–227

    Google Scholar 

  • Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22(2):115–122

    CAS  PubMed  Google Scholar 

  • Huang L, Brooks SA, Li W et al (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer AS, McCouch SR (2004) The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact 17(12):1348–1354

    CAS  PubMed  Google Scholar 

  • Jafary H, Albertazzi G et al (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327–2339. https://doi.org/10.1534/genetics.107.077552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janik K, Stellmach H, Mittelberger C, Hause B (2019) Characterization of phytoplasmal effector protein interaction with proteinaceous plant host targets using bimolecular fluorescence complementation (BiFC). In: Musetti R, Pagliari L (eds) Phytoplasmas. Methods in Molecular Biology, vol 1875. Humana Press, New York

  • Jia Y, McAdams SA et al (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19(15):4004–4014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323

    CAS  PubMed  Google Scholar 

  • Kamoun S (2007) Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10:358–365

    CAS  PubMed  Google Scholar 

  • Kamper J, Kahmann R et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101

    PubMed  Google Scholar 

  • Kawashima CG, Guimaraes GA et al (2016) A pigeonpea gene confers resistance to Asian soybean rust in soybean. Nat Biotechnol 34:661–665

    CAS  PubMed  Google Scholar 

  • Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318(5850):648–651

    CAS  PubMed  Google Scholar 

  • Kiran K, Rawal HC et al (2016) Draft genome of the wheat rust pathogen (Puccinia triticina) unravels genome-wide structural variations during evolution. Genome Biol Evol 8(9):2702–2721. https://doi.org/10.1093/gbe/evw197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran K, Rawal HC et al (2017) Dissection of genomic features and variations of three pathotypes of Puccinia striiformis through whole genome sequencing. Sci Rep 15:85. https://doi.org/10.1038/srep42419

    Article  CAS  Google Scholar 

  • Klymiuk V, Yaniv E, Huang L (2018) Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 9:e3735. https://doi.org/10.1038/s41467-018-06138-9

    Article  CAS  Google Scholar 

  • Koh S, André A et al (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44:516–529. https://doi.org/10.1111/j.1365-313x.2005.02545.x

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    CAS  PubMed  Google Scholar 

  • Lebrun MH, Langin T et al. (2016) Wheat effector assisted breeding for resistance to fungal pathogens (WEAB). Presented at Journées Jean Chevaugeon 2016 (JJC)—11èmes Rencontres de Phytopathologie—Mycologie, SociétéFrançaise de Phytopathologie (SFP), Aussois, FRA (2016-01-25—2016-01-29). 49. https://prodinra.inra.fr/record/347885

  • Lee WS, Hammond-Kosack KE, Kanyuka K (2012) Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: VIGS, HIGS, VOX. Plant Physiol 160(2):582–590. https://doi.org/10.1104/pp.112.203489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HA, Kim SY et al (2014) Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans. New Phytol 203(3):926–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenman M, Ali A et al (2016) Effector-driven marker development and cloning of resistance genes against Phytophthora infestans in potato breeding clone SW93-1015. Theor Appl Genet 129(1):105–115

    CAS  PubMed  Google Scholar 

  • Leonelli L, Erickson E, Lyska D, Niyogi KK (2016) Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis. Plant J 88(3):375–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Goodwin PH et al (2012) Microscopy and proteomic analysis of the non-host resistance of Oryza sativa to the wheat leaf rust fungus, Puccinia triticina f. sp. tritici. Plant Cell Rep 31:637–650. https://doi.org/10.1007/s00299-011-1181-0

    Article  CAS  PubMed  Google Scholar 

  • Lipka U, Fuchs R et al (2010) Live and let die-Arabidopsis nonhost resistance to powdery mildews. Eur J Cell Biol 89:194–199. https://doi.org/10.1016/j.ejcb.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Frick M, Huel R et al (2014) The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS–LRR sequence in wheat. Mol Plant 7:1740–1755. https://doi.org/10.1093/mp/ssu112

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CH, Pedersen C et al (2016) The stripe rust fungal effector PEC6 suppresses pattern-triggered immunity in a host species-independent manner and interacts with adenosine kinases. New Phytol 15:85. https://doi.org/10.1111/nph.14034

    Article  Google Scholar 

  • Lowe I, Cantu D, Dubcovsky J (2011) Durable resistance to the wheat rusts: integrating systems biology and traditional phenotype-based research methods to guide the deployment of resistance genes. Euphytica 179(1):69–79

    PubMed  PubMed Central  Google Scholar 

  • Lu YJ, Schornack S, Spallek T et al (2012) Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cell Microbiol 14:682–697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackie AJ, Roberts AM et al (1993) Glycoproteins recognized by monoclonal antibodies UB7, UB8, and UB10 are expressed early in the development of pea powdery mildew haustoria. Physiol Mol Plant Pathol 43:135–146. https://doi.org/10.1006/pmpp.1993.1046

    Article  CAS  Google Scholar 

  • Maekawa T, Kracher B et al (2012) Conservation of NLR-triggered immunity across plant lineages. Proc Natl Acad Sci USA 109(49):20119–20123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mago R, Zhang P et al (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plants 1:15186

    CAS  PubMed  Google Scholar 

  • Marchal C et al (2018) BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants. https://doi.org/10.1038/s41477-018-0236-4

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald MC, Ahren D, Simpfendorfer S, Milgate A, Solomon PS (2018) The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokinian. Mol Plant Pathol 19(2):432–439. https://doi.org/10.1111/mpp.12535

    Article  CAS  PubMed  Google Scholar 

  • McLellan H, Boevink PC et al (2013) An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathog 9:e1003670

    PubMed  PubMed Central  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Ann Rev Phytopathol 50:267–294

    CAS  Google Scholar 

  • Miller KE, Kim Y, Huh WK, Park HO (2015) Bimolecular fluorescence complementation (BiFC) analysis: advances and recent applications for genome-wide interaction studies. J Mol Biol 427:2039–2055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JW, Herrera-Foessel S et al (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498

    CAS  PubMed  Google Scholar 

  • Niks RE, Marcel TC (2009) Nonhost and basal resistance: how to explain specificity? New Phytol 182(4):817–828

    PubMed  Google Scholar 

  • Nirmala J, Drader T et al (2011) Concerted action of two avirulent spore effectors activates reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance. Proc Natl Acad Sci USA 108(35):14676–14681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR–Cas9 system for genetic engineering of filamentous fungi. PLoS One 10:e0133085

    PubMed  PubMed Central  Google Scholar 

  • Nowara D, Gay A et al (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141. https://doi.org/10.1105/tpc.110.077040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pais M, Win J, Yoshida K, Etherington GJ, Cano LM, Raffaele S, Banfield MJ, Jones A, Kamoun S, Saunders DGO (2013) From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genom Biol 14:211. https://doi.org/10.1186/gb-2013-14-6-211

    Article  Google Scholar 

  • Panwar V, McCallum B, Bakkeren G (2013a) Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Plant Mol Biol 81(6):595–608

    CAS  PubMed  Google Scholar 

  • Panwar V, McCallum B, Bakkeren G (2013b) Endogenous silencing of Puccinia triticina pathogenicity genes through in planta-expressed sequences leads to the suppression of rust diseases on wheat. Plant J 73(3):521–532

    CAS  PubMed  Google Scholar 

  • Panwar V, Jordan M et al (2018) Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat. Plant Biotechnol J 16:1013–1023. https://doi.org/10.1111/pbi.12845

    Article  CAS  PubMed  Google Scholar 

  • Patkar RN, Naqvi NI (2017) Fungal manipulation of hormone-regulated plant defense. PLoS Pathog 13(6):e1006334

    PubMed  PubMed Central  Google Scholar 

  • Patkar RN, Benke PI et al (2015) A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat Chem Biol 11(9):733–740. https://doi.org/10.1038/nchembio.1885

    Article  CAS  PubMed  Google Scholar 

  • Patpour M, Hovmøller MS et al (2016) Emergence of virulence to SrTmp in the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Africa. Plant Dis 100:522. https://doi.org/10.1094/pdis-08-15-0938-pdn

    Article  Google Scholar 

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L et al (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788. https://doi.org/10.1126/science.1239028

    Article  CAS  PubMed  Google Scholar 

  • Petre B, Joly DL, Duplessis S (2014) Effector proteins of rust fungi. Front Plant Sci 5:416

    PubMed  PubMed Central  Google Scholar 

  • Petre B, Saunders DG et al (2015) Candidate effector proteins of the rust pathogen Melampsora larici-populina target diverse plant cell compartments. Mol Plant Microbe Interact 28:689–700

    CAS  PubMed  Google Scholar 

  • Petre B, Saunders DG et al (2016) Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat yellow rust pathogen that associates with processing bodies. PLoS One 11:e0149035

    PubMed  PubMed Central  Google Scholar 

  • Pohl C, Kiel JA, Driessen AJ, Bovenberg RA, Nygard Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5:754–764

    CAS  PubMed  Google Scholar 

  • Prasad P, Bhardwaj SC et al (2016) Ug99: saga, reality and status. Curr Sci 110(9):1614–1616

    Google Scholar 

  • Qi T, Zhu X et al (2017) Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. Plant Biotechnol J 15:85. https://doi.org/10.1111/pbi.12829

    Article  CAS  Google Scholar 

  • Qiao Y, Liu L et al (2013) Oomycete pathogens encode RNA silencing suppressors. Nat Genet 45:330–333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rampitsch C, Günel A, Beimcik E, Mauthe W (2015) Proteome of monoclonal antibody-purified haustoria from Puccinia triticina Race-1. Proteomics 15(7):1307–1315

    CAS  PubMed  Google Scholar 

  • Rigal A, Ma Q, Robert S (2014) Unraveling plant hormone signaling through the use of small molecules. Front Plant Sci 5:373. https://doi.org/10.3389/fpls.2014.00373

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts AM, Mackie AJ et al (1993) Molecular differentiation in the extra haustorial membrane of pea powdery mildew haustoria at early and late stages of development. Physiol Mol Plant Pathol 143:147–160. https://doi.org/10.1006/pmpp.1993.1047

    Article  Google Scholar 

  • Ruud AK, Dieseth JA, Lillemo M (2018) Effects of three Parastagonospora nodorum necrotrophic effectors on spring wheat under Norwegian field conditions. Crop Sci 58:159–168

    CAS  Google Scholar 

  • Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E et al (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786. https://doi.org/10.1126/science.1239022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salcedo A, Rutter W et al (2017) Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science 358(6370):1604–1606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders DG, Win J et al (2012) Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi. PLoS One 7:e29847. https://doi.org/10.1371/journal.pone.0029847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savadi S, Prasad P et al (2017) Molecular breeding technologies and strategies for rust resistance in wheat (Triticum aestivum) for sustained food security. Plant Pathol 67:771–791. https://doi.org/10.1111/ppa.12802

    Article  CAS  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci 16(3):117–125

    CAS  PubMed  Google Scholar 

  • Schwessinger B, Sperschneider J, Cuddy WS et al (2018) A near-complete haplotype-phased genome of the dikaryotic wheat stripe rust fungus Puccinia striiformis f. sp. tritici reveals high interhaplotype diversity. mBio 9:e02275–e02317. https://doi.org/10.1128/mbio.02275-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • See PT, Iagallo EM, Oliver RP et al (2019) Heterologous expression of the Pyrenophora tritici-repentis effector proteins ToxA and ToxB, and the prevalence of effector sensitivity in Australian cereal crops. Front Microbiol 10:182. https://doi.org/10.3389/fmicb.2019.00182

    Article  PubMed  PubMed Central  Google Scholar 

  • Segovia V, Bruce M et al (2016) Two small secreted proteins from Puccinia triticina induce reduction of β-glucoronidase transient expression in wheat isolines containing Lr9, Lr24 and Lr26. Can J Plant Pathol 38(1):91–102. https://doi.org/10.1080/07060661.2016.1150884

    Article  CAS  Google Scholar 

  • Selin C, De Kievit TR, Belmonte MF, Fernando WGD (2016) Elucidating the role of effectors in plant-fungal interactions: progress and challenges. Front Microbiol 7:600. https://doi.org/10.3389/fmicb.2016.00600

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafiei R, Hang C, Kang JG, Loake GJ (2007) Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Mol Plant Pathol 8:773–784. https://doi.org/10.1111/j.1364-3703.2007.00431.x

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Sharma S et al (2013) Deployment of the B urkholderiaglumae type III secretion system as an efficient tool for translocating pathogen effectors to monocot cells. Plant J 74(4):701–712

    CAS  PubMed  Google Scholar 

  • Shi TQ, Liu GN, Ji RY, Shi K, Song P, Ren LJ, Huang H, Ji XJ (2017) CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 101(20):7435–7443. https://doi.org/10.1007/s00253-017-8497-9

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Hodson DP et al (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Rev 1:054

    Google Scholar 

  • Sohn KH, Lei R et al (2007) The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Plant Cell 19(12):4077–4090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonah H, Deshmukh RK, Bélanger RR (2016) Computational prediction of effector proteins in fungi: opportunities and challenges. Front Plant Sci 7:126. https://doi.org/10.3389/fpls.2016.00126

    Article  PubMed  PubMed Central  Google Scholar 

  • Song X, Rampitsch C et al (2011) Proteome analysis of wheat leaf rust fungus, Puccinia triticina, infection structures enriched for haustoria. Proteomics 11(5):944–963

    CAS  PubMed  Google Scholar 

  • Sperschneider J, Williams AH (2015) Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors. Front Plant Sci 6:1168

    PubMed  PubMed Central  Google Scholar 

  • Sperschneider J, Gardiner DM et al (2016) EffectorP: predicting fungal effector proteins from secretomes using machine learning. New Phytol 210:743–761

    CAS  PubMed  Google Scholar 

  • Sperschneider J, Catanzariti AM et al (2017) LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Sci Rep 7:44598. https://doi.org/10.1038/srep44598

    Article  PubMed  PubMed Central  Google Scholar 

  • Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Ann Rev Phytopathol 47:233–263

    CAS  Google Scholar 

  • Steuernagel B, Periyannan SK, Hernandez-Pinzon I, Witek K, Rouse MN, Yu G et al (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34:652–655

    CAS  PubMed  Google Scholar 

  • Tabuchi M, Kawai Y et al (2009) Development of a novel functional high-throughput screening system for pathogen effectors in the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 73(10):2261–2267

    CAS  PubMed  Google Scholar 

  • Tamura S (1990) Historical aspects of gibberellins. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins. Springer, Berlin, pp 1–8

    Google Scholar 

  • Tan KC, Phan HT, Rybak K, John E, Chooi YH, Solomon PS, Oliver RP (2015) Functional redundancy of necrotrophic effectors–consequences for exploitation for breeding. Front Plant Sci 6:501

    PubMed  PubMed Central  Google Scholar 

  • Thind AK, Wicker T et al (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35(8):793–796

    CAS  PubMed  Google Scholar 

  • Thomas WJ, Thireault CA, Kimbrel JA, Chang JH (2009) Recombineering and stable integration of the Pseudomonas syringae pv. syringae 61 hrp/hrc cluster into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1. Plant J 60(5):919–928

    CAS  PubMed  Google Scholar 

  • Tinoco MLP, Dias BB et al (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8(1):27

    PubMed  PubMed Central  Google Scholar 

  • Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NA et al (2003) EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genom Res 13(7):1675–1685

    CAS  Google Scholar 

  • Uhse S, Djamei A (2018) Effectors of plant-colonizing fungi and beyond. PLoS Pathog 14(6):e1006992

    PubMed  PubMed Central  Google Scholar 

  • Uma B, Rani TS, Podile AR (2011) Warriors at the gate that never sleep: non-host resistance in plants. J Plant Physiol 168(18):2141–2152

    CAS  PubMed  Google Scholar 

  • Upadhyaya NM, Mago R et al (2014) A bacterial type III secretion assay for delivery of fungal effector proteins into wheat. Mol Plant Microbe Interact 27:255–264. https://doi.org/10.1094/mpmi-07-13-0187-f

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya NM, Garnica DP et al (2015) Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes. Front Plant Sci 5:759

    PubMed  PubMed Central  Google Scholar 

  • Vleeshouwers VG, Oliver RP (2014) Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant Microbe Interact 27(3):196–206

    CAS  PubMed  Google Scholar 

  • Vleeshouwers VG, Rietman H, Krenek P et al (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One 3:e2875

    PubMed  PubMed Central  Google Scholar 

  • Vleeshouwers VG, Raffaele S et al (2011) Understanding and exploiting late blight resistance in the age of effectors. Ann Rev Phytopathol 49:507–531

    CAS  Google Scholar 

  • Vogel JP, Raab TK et al (2002) PMR6, a pectatelyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14(9):2095–2106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walton JD, Avis TJ et al (2009) Effectors, effectors et encore des effectors: the XIV International Congress on Molecular-Plant Microbe Interactions, Quebec. Mol Plant Microbe Interact 22:1479–1483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Lin R, Feng J et al (2015) TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. Front Plant Sci 6:108. https://doi.org/10.3389/fpls.2015.00108

    Article  PubMed  PubMed Central  Google Scholar 

  • Wellings CR, McIntosh RA, Walker J (1987) Puccinia striiformis f. sp. tritici in eastern Australia—possible means of entry and implications for plant quarantine. Plant Pathol 36:239–241

    Google Scholar 

  • Wu JQ, Sakthikumar S et al (2017) Comparative genomics integrated with association analysis identifies candidate effector genes corresponding to Lr20 in phenotype-paired Puccinia triticina isolates from Australia. Front Plant Sci 8:148

    PubMed  PubMed Central  Google Scholar 

  • Wulff BB, Horvath DM, Ward ER (2011) Improving immunity in crops: new tactics in an old game. Curr Opin Plant Biol 14(4):468–476

    CAS  PubMed  Google Scholar 

  • Xia C, Wang M et al (2017) Secretome characterization and correlation analysis reveal putative pathogenicity mechanisms and identify candidate avirulence genes in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Front Microbiol 8:2394

    PubMed  PubMed Central  Google Scholar 

  • Xia C, Wang M, Yin C et al (2018) Genomic insights into host adaptation between the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei). BMC Genomics 19:664. https://doi.org/10.1186/s12864-018-5041-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin CT, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact 24:554–561

    CAS  PubMed  Google Scholar 

  • Yin C, Park JJ et al (2014) Characterization of a tryptophan 2-monooxygenase gene from Puccinia graminis f. sp. tritici involved in auxin biosynthesis and rust pathogenicity. Mol Plant Microbe Interact 27(3):227–235

    CAS  PubMed  Google Scholar 

  • Yin C, Downey SI, Klages-Mundt NL, Ramachandran S, Chen X, Szabo LJ et al (2015) Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia. BMC Genom 16:1791. https://doi.org/10.1186/s12864-015-1791-y

    Article  CAS  Google Scholar 

  • Zhang GQ, Angeles ER et al (1996) RAPD and RFLP mapping of the bacterial blight resistance gene xa-13 in rice. Theor Appl Genet 93(1–2):65–70

    CAS  PubMed  Google Scholar 

  • Zhang H, Guo J, Voegele RT, Zhang J, Duan Y, Luo H, Kang Z (2012) Functional characterization of calcineurin homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici using a host-induced RNAi system. PLoS One 7(11):e49262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Chen S et al (2017) Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc Natl Acad Sci USA 114:e9483–e9492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Lin X et al (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 102:15383–15388. https://doi.org/10.1073/pnas.0503023102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Wang J et al (2018) Candidate effector Pst_8713 impairs the plant immunity and contributes to virulence of Puccinia striiformis f. sp. tritici. Front Plant Sci 15:85. https://doi.org/10.3389/fpls.2018.01294

    Article  Google Scholar 

  • Zheng W, Huang L et al (2013a) High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat Commun 4:2673. https://doi.org/10.1038/ncomms3673

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Nonomura T et al (2013b) Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS One 8(7):e70723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Qi T et al (2017) Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiol 175:1853–1863. https://doi.org/10.1104/pp.17.01223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Bhardwaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, P., Savadi, S., Bhardwaj, S.C. et al. Rust pathogen effectors: perspectives in resistance breeding. Planta 250, 1–22 (2019). https://doi.org/10.1007/s00425-019-03167-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03167-6

Keywords

Navigation