Skip to main content
Log in

Pattern-Triggered Immunity  and Effector-Triggered Immunity: crosstalk and cooperation of PRR and NLR-mediated plant defense pathways during host–pathogen interactions

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The elucidation of the molecular basis underlying plant-pathogen interactions is imperative for the development of sustainable resistance strategies against pathogens. Plants employ a dual-layered immunological detection and response system wherein cell surface-localized Pattern Recognition Receptors (PRRs) and intracellular Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs) play pivotal roles in initiating downstream signalling cascades in response to pathogen-derived chemicals. Pattern-Triggered Immunity (PTI) is associated with PRRs and is activated by the recognition of conserved molecular structures, known as Pathogen-Associated Molecular Patterns. When PTI proves ineffective due to pathogenic effectors, Effector-Triggered Immunity (ETI) frequently confers resistance. In ETI, host plants utilize NLRs to detect pathogen effectors directly or indirectly, prompting a rapid and more robust defense response. Additionally epigenetic mechanisms are participating in plant immune memory. Recently developed technologies like CRISPR/Cas9 helps in exposing novel prospects in plant pathogen interactions. In this review we explore the fascinating crosstalk and cooperation between PRRs and NLRs. We discuss epigenomic processes and CRISPR/Cas9 regulating immune response in plants and recent findings that shed light on the coordination of these defense layers. Furthermore, we also have discussed the intricate interactions between the salicylic acid and jasmonic acid signalling pathways in plants, offering insights into potential synergistic interactions that would be harnessed for the development of novel and sustainable resistance strategies against diverse group of pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signalling independent of the receptor kinase BAK1. Proc Natl Acad Sci USA 109:303–308

    Article  CAS  PubMed  Google Scholar 

  • Alhoraibi H, Bigeard J, Rayapuram N, Colcombet J, Hirt H (2019) Plant Immunity: The MTI-ETI model and beyond. Curr Issues Mol Biol 30:39–58

    Article  PubMed  Google Scholar 

  • Ali Z, Ali S, Tashkandi M, Zaidi SSEA, Mahfouz MM (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep 6(1):26912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ, Mahfouz M (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Armstrong L (2014) Epigenetics. Taylor & Francis Group, New York, NY, USA

    Google Scholar 

  • Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–377

    Article  CAS  PubMed  Google Scholar 

  • Baggs EL, Monroe JG, Thanki AS, O’Grady R, Schudoma C, Haerty W, Krasileva KV (2020) Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages reveals coevolved components of plant immunity and drought response. Plant Cell 32:2158–2177. https://doi.org/10.1105/tpc.19.00903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1(10):1–4

    Article  Google Scholar 

  • Bastedo DP, Khan M, Martel A, Seto D, Kireeva I, Zhang J, Masud W, Millar D, Lee JY, Lee AHY (2019) Perturbations of the ZED1 pseudokinase activate plant immunity. Public Libr Sci Pathog 15:e1007900

    CAS  Google Scholar 

  • Bastet A, Lederer B, Giovinazzo N, Arnoux X, German- Retana S, Reinbold C, Brault V, Garcia D, Djennane S, Gersch S et al (2019) Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. Plant Biotechnol J 16(9):1569–1581. https://doi.org/10.1111/pbi.12896.102

    Article  Google Scholar 

  • Bernoux M, Burdett H, Williams SJ, Zhang X, Chen C, Newell K, Dodds PN (2016) Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-based switch activation model. Plant Cell 28(1):146–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birker D, Heidrich K, Takahara H, Narusaka M, Deslandes L, Narusaka Y, Reymond M, Parker JE, O’Connell R (2009) A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J 60:602–613

    Article  CAS  PubMed  Google Scholar 

  • Bogeski I, Kappl R, Kummerow C, Gulaboski R, Hoth M, Niemeyer BA (2011) Redox regulation of calcium ion channels: chemical and physiological aspects. Cell Calcium 50(5):407–423

    Article  CAS  PubMed  Google Scholar 

  • Brock AK, Willmann R, Kolb D, Grefen L, Lajunen HM, Bethke G, Lee J, Nurnberger T, Gust AA (2010) The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression. Plant Physiol 153:1098–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen P, Petersen M, Bjørn Nielsen H, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene dependent responses via EDS1 and PAD4. Plant J 47(4):532–546

    Article  CAS  PubMed  Google Scholar 

  • Cesari S (2018) Multiple strategies for pathogen perception by plant immune receptors. New Phytol 219:17–24

    Article  CAS  PubMed  Google Scholar 

  • Cesari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, Kawano Y, Shimamoto K, Dodds P, Terauchi R, Kroj T (2014) The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. Eur Mol Biol Organ J 33:1941–1959

    Article  CAS  Google Scholar 

  • Chang X (2012) PTI versus ETI-Defence signalling diverges at stilbenic biosynthesis in PTI and ETI, and in resistant and susceptible Vitis cells (Doctoral dissertation, Karlsruhe, Karlsruher Institut für Technologie (KIT), Diss., 2012)

  • Coleman-Derr D, Zilberman D (2012) Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 8:e1002988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119

    Article  CAS  PubMed  Google Scholar 

  • Cook DE, Mesarich CH, Thomma BP (2015) Understanding plant immunity as a surveillance system to detect invasion. Annu Rev Phytopathol 53:541–563

    Article  CAS  PubMed  Google Scholar 

  • Couto D, Zipfel C (2016a) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537–552

    Article  CAS  PubMed  Google Scholar 

  • Couto D, Niebergall R, Liang X, Bücherl CA, Sklenar J, Macho AP, Zipfel C (2016) The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1. PLoS Pathog 12(8):e1005811

    Article  PubMed  PubMed Central  Google Scholar 

  • de Azevedo Manhães AME, Ortiz-Morea FA, He P, Shan L (2021) Plant plasma membrane-resident receptors: Surveillance for infections and coordination for growth and development. J Integr Plant Biol 63:79–101

    Article  PubMed Central  Google Scholar 

  • De la Concepcion JC, Franceschetti M, Maqbool A, Saitoh H, Terauchi R, Kamoun S, Banfield MJ (2018) Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. Nat Plants 4(8):576–585

    Article  PubMed  Google Scholar 

  • De Lorenzo G, Ferrari S, Cervone F, Okun E (2018) Extracellular DAMPs in plants and mammals: immunity, tissue damage and repair. Trends Immunol 39:937–950

    Article  PubMed  Google Scholar 

  • De Wit M, Spoel SH, Sanchez-Perez GF, Gommers CM, Pieterse CM, Voesenek LA, Pierik R (2013) Perception of lowred:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. Plant J 75(1):90–103

    Article  PubMed  Google Scholar 

  • De Young BJ, Qi D, Kim SH, Burke TP, Innes RW (2012) Activation of a plant nucleotide binding-leucine rich repeat disease resistance protein by a modified self protein. Cell Microbiology 14:1071–1084

    Article  CAS  Google Scholar 

  • Dhawan R, Luo H, Foerster AM, AbuQamar S, Du H-N, Briggs SD, Scheid OM, Mengiste T (2009) HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21:1000–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dievart A, Gottin C, Périn C, Ranwez V, Chantret N (2020) Origin and diversity of plant receptor-like kinases. Annu Rev Plant Biol 71:131–156

    Article  CAS  PubMed  Google Scholar 

  • Diezel C, von Dahl CC, Gaquerel E, Baldwin IT (2009) Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol 150(3):1576–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X (2004) NPR1, All things considered. Curr Opin Plant Biol 7:547–552

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos MV, Curtis R, Abrantes I (2013) Effect of plant elicitors on the reproduction of the root-knot nematode Meloidogyne chitwoodi on susceptible hosts. Eur J Plant Pathol 136(1):193–202

    Article  Google Scholar 

  • Erdmann RM, Picard CL (2020) RNA-directed DNA methylation. PLoS Genet 16:e1009034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eschen-Lippold L, Jiang X, Elmore JM, Mackey D, Shan L, Coaker G, Scheel D, Lee J (2016) Bacterial AvrRpt2-like cysteine proteases block activation of the Arabidopsis mitogen-activated protein kinases, MPK4 and MPK11. Plant Physiol 171:2223–2238

    Article  PubMed  PubMed Central  Google Scholar 

  • Espinosa A, Guo M, Tam VC, Fu ZQ, Alfano JR (2003) The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Mol Micro Boil 49:377–387

    Article  CAS  Google Scholar 

  • Essemine J, Guerfel M, Qu M (2024) Genetic and epigenetic regulatory mechanisms in higher plants in response to abiotic stress. Front Plant Sci 15:1374289

    Article  PubMed  PubMed Central  Google Scholar 

  • Food and Agriculture Organization (FAO) (2019) Plant Production and Protection. https://www.fao.org/plant-production-protection/about/en

  • Gao QM, Venugopal S, Navarre D, Kachroo A (2011) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 Proteins. Plant Physiol 155(1):464–476

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Qi J, Hu M, Bi G, Zhou JM, Han GZ (2022) The origin and evolution of a plant resistosome. Plant Cell 34:1600–1620. https://doi.org/10.1093/plcell/koac053

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta PD (2020) What your blood tells? A review. J Cell Tissue Res 20:6897–6913

    CAS  Google Scholar 

  • El Hadrami A, El Hadrami I, Daayf F (2009) 10 Suppression of Induced Plant Defence Responses by Fungal and Oomycete Pathogens. Microbe Interactions. p 231

  • Han JP, Köster P, Drerup MM, Scholz M, Li S, Edel KH, Kudla J (2019) Fine-tuning of RBOHF activity is achieved by differential phosphorylation and Ca2+ binding. New Phytol 221(4):1935–1949

    Article  CAS  PubMed  Google Scholar 

  • Hatsugai N, Igarashi D, Mase K, Lu Y, Tsuda Y, Chakravarthy S, Wei HL, Foley JW, Collmer A, Glazebrook JA (2017) plant effector-triggered immunity signalling sector is inhibited by pattern-triggered immunity. Eur Mol Biol Organ J 36:2758–2769

    Article  CAS  Google Scholar 

  • Hirano H, Gootenberg J, Horii T, Abudayyeh O, Kimura M, Hsu P, Nakane T, Ishitani R, Hatada I, Zhang F et al (2016) Structure and engineering of Francisella novicida Cas9. Cell 164(5):950–961. https://doi.org/10.1016/j.cell.2016.01.039.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann U, Hothorn M (2019) Crystal structure of the leucinerich repeat ectodomain of the plant immune receptor kinase SOBIR1. Acta Crystallogr Sect D: Struct Biol 75:488–497

    Article  CAS  Google Scholar 

  • Hohmann U, Nicolet J, Moretti A, Hothorn LA, Hothorn M (2018) Mechanistic analysis of the SERK3 elongated allele defines a role for BIR ectodomains in brassinosteroid signalling. BioRxiv 10:1101–25754

    Google Scholar 

  • Holton N, Nekrasov V, Ronald PC, Zipfel C (2015) The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signalling components in monocots and dicots. Public Libr SciPathog 11:e1004602

    Google Scholar 

  • Idnurm A, Urquhart AS, Vummadi DR, Chang S, Van de Wouw AP, López-Ruiz FJ (2017) Spontaneous and CRISPR/Cas9-induced mutation of the osmosensor histidine kinase of the canola pathogen Leptosphaeria maculans. Fungal Biolo Biotechnol 4(1):12–12. https://doi.org/10.1186/s40694-017-0043-0

    Article  Google Scholar 

  • Imam J, Singh PK, Shukla P (2016) Plant microbe interactions in post genomic era: perspectives and applications. Front Microbiol 7:1488

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson RN, Golden SM, van Erp PB, Carter J, Westra ER, Brouns SJ, Wiedenheft B (2014) Crystal structure of the CRISPR RNA—guided surveillance complex from Escherichia coli. Science 345(6203):1473–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob F, Vernaldi S, Markawa T (2013) Evalution and conservation of plant NLR functions. Front Immunol 4:297

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamieson PA, Shan L, He P (2018) Plant cell surface molecular cypher: Receptor-like proteins and their roles in immunity and development. Plant Sci 274:242–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12(1):50–55. https://doi.org/10.1038/embor.2010.186

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Orbovic V, Jones JB, Wang N (2016) Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCsLOB1.3infection. Plant Biotechnol J 14(5):1291–1301. https://doi.org/10.1111/pbi.12495

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jose J, Ghantasala S, Roy Choudhury S (2020) Arabidopsis transmembrane receptor-like kinases (RLKs): a bridge between extracellular signal and intracellular regulatory machinery. Int J Mol Sci 21(11):4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Manners JM (2013) MYC2: The master in action. Mol Plant 6:686–703

    Article  CAS  PubMed  Google Scholar 

  • Kesarwani M, Yoo JM, Dong XN (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144(1):336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Desveaux D, Singer AU, Patel P, Sondek J, Dangl JL (2005) The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proc Natl Acad Sci USA 102:6496–6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Ramlal A, Kumar K, Rani A, Mishra V (2021) Signaling pathways and downstream effectors of host innate immunity in plants. Int J Mol Sci 22:9022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal NK, Nagalakshmi U, Hurlburt NK, Flores R, Bak A, Sone P, Dinesh-Kumar SP (2018) The receptor-like cytoplasmic kinase BIK1 localizes to the nucleus and regulates defense hormone expression during plant innate immunity. Cell Host Microbe 23(4):485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee D, Lal NK, Lin ZD, Ma S, Liu J, Castro B, Toruno T, Dinesh- Kumar SP, Coaker G (2020) Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat Commun 11:1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SC, Ritsema T, Pieterse CM (2010) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232(6):1423–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewsey MG, Murphy AM, MacLean D, Dalchau N, Westwood JH, Macaulay K, Bennett MH, Moulin M, Hanke DE, Powell G, Smith AG, Carr JP (2010) Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. Mol Plant-Microbe Interact 23(7):835–845

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: anode of convergence for jasmonate-mediated and salicylate mediated signals in plant defense. Plant Cell 16(2):319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Eichten SR, Hermanson PJ, Zaunbrecher VM, Song J, Wendt J, Springer NM (2014) Genetic perturbation of the maize methylome. Plant Cell 26(12):4602–4616

    Article  PubMed  PubMed Central  Google Scholar 

  • Li B, Meng X, Shan L, He P (2016a) Transcriptional regulation of pattern-triggered immunity in plants. Cell Host Microbe 19(5):641–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Kim P, Yu L, Cai G, Chen S, Alfano JR, Zhou JM (2016b) Activation-dependent destruction of a co-receptor by a Pseudomonas syringae effector dampens plant immunity. Cell Host Microbe 20:504–514

    Article  CAS  PubMed  Google Scholar 

  • Li N, Han X, Feng D, Yuan D, Huang L-J (2019) Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are Whispering? Int J Mol Sci 20:671

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang X, Ding P, Lian K, Wang J, Ma M, Li L, Li M, Zhang X, Zhou JM (2016) Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. Elife 5:e13568

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebrand TWH, van den Burg HA, Joosten MHAJ (2014) Two for all: receptor associated kinases SOBIR1 and BAK1. Trends Plant Sci 19:123–132

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Ma X, Shan L, He P (2013) Big Roles of Small kinases: The complex functions of receptor-like cytoplasmic kinases in plant immunity and development. J Integr Plant Biol 55:1188–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J, Zhou JM, Chai J (2012) Chitin-induced dimerization activates a plant immune receptor. Science 336:1160–1164

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wang J, Han Z, Gong X, Zhang H, Chai J (2016) Molecular mechanism for fungal cell wall recognition by rice chitin receptor OsCEBiP. Structure 24:1192–1200

    Article  CAS  PubMed  Google Scholar 

  • Lopez A, Ramırez V, Garcıa-Andrade J, Flors V, Vera P (2011) The RNA silencing enzyme RNA polymerase V is required for plant immunity. PLoS Genet 7:e1002434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu D, Lin W, Gao X, Wu S, Cheng C, Avila J, Heese A, Devarenne TP, He P, Shan L (2011) Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332:1439–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Chen J, Wang M, Ren Y, Wang S, Lei C, Cheng Z (2018a) Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J Exp Bot 69(5):1051–1064. https://doi.org/10.1093/jxb/erx458

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Song G, Walley J, Shan L, He P, Casteel C, Fisher AJ, Dinesh-Kumar SP (2018b) The receptor-like cytoplasmic kinase BIK1 localizes to the nucleus and regulates defense hormone expression during plant innate immunity. Cell Host Microbe 23:485–497

    Article  PubMed  PubMed Central  Google Scholar 

  • Macho AP, Schwessinger B, Ntoukakis V, Brutus A, Segonzac C, Roy S, Kadota Y, Oh MH, Sklenar J, Derbyshire PA (2014) bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. Science 343:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Maekawa T, Cheng W, Spiridon LN, Töller A, Lukasik E, Saijo Y, Liu P, Shen QH, Micluta MA, Somssich IE, Takken FLW, Petrescu PAJ, Chai J, Schulze-Lefert P (2011) Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9:187–199

    Article  CAS  PubMed  Google Scholar 

  • Makandar R, Nalam V, Chaturvedi R, Jeannotte R, Sparks AA, Shah J (2010) Involvement of salicylate and jasmonate signalling pathways in Arabidopsis interaction with Fusarium graminearum. Mol Plant-Microbe Interact 23(7):861–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield J, Jenner C, Hockenhull R, Bennett MA, Stewart R (1994) Characterization of avrPphE, a gene for cultivar-specific avirulence from Pseudomonas syringae pv. phaseolicola which is physically linked to hrpY, a new hrp gene identified in the halo-blight bacterium. Mol Plant Microbe Interact 7:726–739

    Article  CAS  PubMed  Google Scholar 

  • Mansoor S, Ali Wani O, Lone JK, Manhas S, Kour N, Alam P, Ahmad A, Ahmad P (2022a) Reactive oxygen species in plants: from source to sink. Antioxidants 11(2):225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansoor S, Ali Wani O, Lone JK, Manhas S, Kour N, Alam P, Ahmad P (2022b) Reactive oxygen species in plants: from source to sink. Antioxidants 11(2):225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansoor S, Sakina A, Mir MA, Mir JI, Wani AA, un Nabi S, Masoodi KZ, (2023) Elucidating the role of reactive oxygen species metabolism and phenylpropanoid pathway during an incompatible interaction between apple-Venturia inaequalis host-pathosystem. S Afr J Bot 160:428–436

    Article  CAS  Google Scholar 

  • Marks F, Klingmüller U, Müller-Decker K (2017) Cellular signal processing: an introduction to the molecular mechanisms of signal transduction. Garland Science

  • Martin R, Qi T, Zhang H, Liu F, King M, Toth C, Nogales E, Staskawicz BJ (2020) Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370:eabd9993. https://doi.org/10.1126/science.abd9993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signalling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140(1):249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray SL, Ingle RA, Petersen LN, Denby KJ (2007) Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Mol Plant-Microbe Interact 20(11):1431–1438

    Article  CAS  PubMed  Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7(1):482

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngou BPM, Ahn HK, Ding P, Jones JDG (2021) Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592(7852):110–115

    Article  CAS  PubMed  Google Scholar 

  • Ngou BPM, Ding P, Jones JD (2022a) Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell 34(5):1447–1478

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngou BPM, Heal R, Wyler M, Schmid MW, Jones JDG (2022b) Concerted expansion and contraction of immune receptor gene repertoires in plant genomes. Nat Plants 8:1146–1152. https://doi.org/10.1038/s41477-022-01260-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortigosa A, Gimenez-Ibanez S, Leonhardt N, Solano R (2019) Design of a bacterial speck resistant tomato by CRISPR/ Cas9-mediated editing of SlJAZ2. Plant Biotechnol J 17(3):665–673. https://doi.org/10.1111/pbi.13006

    Article  CAS  PubMed  Google Scholar 

  • Parwez R, Aftab T, Gill SS, Naeem M (2022) Abscisic acid signaling and crosstalk with phytohormones in regulation of environmental stress responses. Environ Exp Bot 199:104885

    Article  CAS  Google Scholar 

  • Pena-Cortés H, Albrecht T, Prat S, Weiler EW, Willmitzer L (1993) Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191(1):123–128

    Article  Google Scholar 

  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017a) Engineering canker-resistant plants through CRISPR/ Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15(12):1509–1519. https://doi.org/10.1111/pbi.12733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng F, Wang X, Sun Y, Dong G, Yang Y, Liu X, Bai Z (2017b) Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Fact 16:1–13

    Article  CAS  Google Scholar 

  • Peng Y, van Wersch R, Zhang Y (2018a) Convergent and divergent signaling in pamp-triggered immunity and effector-triggered immunity. Mol Plant Microbe Interact 31:403–409

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, vanWersch R, Zhang Y (2018b) Convergent and divergent signalling in PAMP-triggered immunity and effector-triggered immunity. Mol Plant Microbe Interact 31:403–409

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689

    Article  CAS  PubMed  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(3):653–663

    Article  CAS  PubMed  Google Scholar 

  • Pré M, Atallah M, Champion A, De Vos M, Pieterse CMJ, Memelink J (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147:1347–1357

    Article  PubMed  PubMed Central  Google Scholar 

  • Prokchorchik M, Choi S, Chung EH, Won K, Dangl JL, Sohn KH (2020) A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors. New Phytol 225:1327–1342

    Article  CAS  PubMed  Google Scholar 

  • Qian Yu, Liu Y-L, Sun G-Z, Liu Y-X, Chen J, Zhou Y-B, Chen M, Ma Y-Z, Zhao-Shi Xu, Lan J-H (2021) Genome-wide analysis of the Soybean calmodulin-binding protein 60 family and identification of Gm CBP60a-1 responses to drought and salt stresses. Int J Mol Sci 22:13501

    Article  Google Scholar 

  • Qiao H, Shen Z, Huang SC, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Wang K, Sun L, Xing H, Wang S, Li L, Chen S, Guo HS, Zhang J (2018) The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. Elife 7:e34902

    Article  PubMed  PubMed Central  Google Scholar 

  • Quadrana L, Etcheverry M, Gilly A, Caillieux E, Madoui MA, Guy J, Bortolini Silveira A, Engelen S, Baillet V, Wincker P et al (2019) Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nat Commun 10:3421

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Zavaleta CY, García-Barrera LJ, Rodríguez-Verástegui LL, Arriet Flores D, Gregorio-Jorge J (2022) An overview of PRR- and NLR-mediated immunities: conserved signaling components across the plant kingdom that communicate both pathways. Int J Mol Sci 23:12974. https://doi.org/10.3390/ijms232112974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  PubMed  Google Scholar 

  • Roudaire T, Héloir MC, Wendehenne D, Zadoroznyj A, Dubrez L, Poinssot B (2021) Cross kingdom immunity: the role of immune receptors and downstream signaling in animal and plant cell death. Front Immunol 11:612452

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB (2015) A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Schultink A, Qi TC, Lee A, Steinbrenner AD, Staskawicz B (2017) Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1. Plant J 92:787–795. https://doi.org/10.1111/tpj.13715

    Article  CAS  PubMed  Google Scholar 

  • Schweiger R, Heise AM, Persicke M, Müller C (2014) Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types. Plant Cell Environ 37(7):1574–1585

    Article  CAS  PubMed  Google Scholar 

  • Segonzac C, Macho AP, Sanmartın M, Ntoukakis V, Sanchez- Serrano JJ, Zipfel C (2014) Negative control of BAK1 by protein phosphatase 2A during plant innate immunity. Eur Mol Biol Organ J 33:2069–2079

    Article  CAS  Google Scholar 

  • Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y, Lee JS, Song JT, Kim JK, Choi YD (2013) AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73(3):483–495

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH (2003) NPR1 modulates cross-talk between Salicylate- and Jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15(3):760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel SH, Loake GJ (2011) Redox-based protein modifications: the missing link in plant immune signalling. Curr Opin Plant Biol 14(4):358–364

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoff between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA 104(47):18842–18847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, Spears BJ, Kim SH, Gassmann W (2018) Constant vigilance: Plant functions guarded by resistance proteins. Plant J 93:637–650

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N, Shimaya K, Nishimura T, Riemann M, Nick P (2011) RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol 52(9):1686–1696

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2013) Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav 8(6):e24260

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17(5):260–270

    Article  CAS  PubMed  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Thor K, Jiang S, Michard E, George J, Scherzer S, Huang S, Zipfel C (2020) The calcium-permeable channel OSCA1. 3 regulates plant stomatal immunity. Nature 585(7826):569–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522

    Article  CAS  PubMed  Google Scholar 

  • Van den Ackerveken GF, Dunn RM, Cozijnsen AJ, Vossen JP, Van den Broek HW, De Wit PJ (1994) Nitrogen limitation induces expression of the avirulence gene avr9 in the tomato pathogen Cladosporium fulvum. Mol Gen Genet 243:277–285

    Article  PubMed  Google Scholar 

  • Van der Biezen EA, Jones JD (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23:454–456

    Article  PubMed  Google Scholar 

  • Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25(2):744–761

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Chen HW, Li QT, Wei W, Li W, Zhang WK et al (2015a) GmWRKY27 interacts with Gm MYB174 to reduce expression of Gm NAC29 for stress tolerance in soybean plant. Plant J 83:224–236

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Roux B, Feng F, Guy E, Li L, Li N, Zhang X, Lautier M, Jardinaud MF, Chabannes M (2015b) The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18:285–295

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Meijuan H, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang H-W, Zhou J-M, Chai J (2019a) Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364:eaav5870. https://doi.org/10.1126/science.aav5870

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang J, Hu M, Wu S, Qi J, Wang G, Han Z, Qi Y, Gao N, Wang HW, Zhou JM, Chai J (2019b) Ligand-triggered allosteric ADP release primes a plant NLR complex. Science. https://doi.org/10.1126/science.aav5868

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei HL, Chakravarthy S, Mathieu J, Helmann TC, Stodghill P, Swingle B, Collmer A (2015) Pseudomonas syringae pv. tomato DC3000 type III secretion effector polymutants reveal an interplay between HopAD1 and AvrPtoB. Cell Host Microbe 17(6):752–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, van der Burgh A, Bi G, Zhang L, Alfano JR, Martin GB, Joosten MHAJ (2017) The bacterial effector AvrPto targets the regulatory co-receptor SOBIR1 and suppresses defence signalling mediated by the receptor-like protein Cf-4. Molecular Plant Microbe Interactions 31:75–85

    Article  PubMed  Google Scholar 

  • Yamaguchi N (2022) Epigenetics in Plant Development. Front Plant Sci 13:864945

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang YX, Wang MM, Ren Y, Onac E, Zhou G, Peng S, Xia XJ, Shi K, Zhou YH, Yu JQ (2014) Light-induced systemic resistance in tomato plants against root-knot nematode Meloidogyne incognita. Plant Growth Regul. https://doi.org/10.1007/s10725-014-9986-9

    Article  Google Scholar 

  • Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40(12):5569–5576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu A, Lepere G, Jay F, Wang J, Bapaume L, Wang Y, Abraham A-L, Penterman J, Fischer RL, Voinnet O et al (2013) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci, USA 110:2389–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu TY, Sun MK, Liang LK (2021) Receptors in the induction of the plant innate immunity. Mol Plant Microbe Interact 34(6):587–601

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Huang Y, Ge W, Jia Z, Song S, Zhang L, Huang Y (2019) Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genomics 20:1–13

    Article  Google Scholar 

  • Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou JM, He SY, Xin XF (2021) Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592(7852):105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zander M, La Camera S, Lamotte O, Metraux JP, Gatz C (2010) Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J 61(2):200–210

    Article  CAS  PubMed  Google Scholar 

  • Zander M, Chen SX, Imkampe J, Thurow C, Gatz C (2012) Repression of the Arabidopsis thaliana jasmonic acid/ethylene induced defense pathway by TGA-interacting glutaredoxins depends on their C-Terminal ALWL Motif. Mol Plant 5(4):831–840

    Article  CAS  PubMed  Google Scholar 

  • Zavaliev R, Mohan R, Chen T, Dong X (2020) Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell 182:1093–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaynab M, Sharif Y, Fatima M, Afzal MZ, Aslam MM, Raza MF, Li S (2020a) CRISPR/Cas9 to generate plant immunity against pathogen. Microb Pathog 141:103996

    Article  CAS  PubMed  Google Scholar 

  • Zaynab M, Sharif Y, Fatima M, Afzal MZ, Aslam MM, Raza MF, Li S (2020b) CRISPR/Cas9 to generate plant immunity against pathogen. Microb Pathog 141:103996

    Article  CAS  PubMed  Google Scholar 

  • Zhang XC, Gassmann W (2007) Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defence responses. Plant Physiol 145:1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li X (2019) Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr Opin Biol 50:29–36

    Article  CAS  Google Scholar 

  • Zhang YL, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15(11):2647–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang PJ, Zheng SJ, van Loon JJ, Boland W, David A, Mumm R, Dicke M (2009) Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proc Natl Acad Sci USA 106(50):21202–21207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Lin X, Han Z, Wang J, Qu LJ, Chai J (2016) SERK Family receptor-like kinases function as co-receptors with PXY for plant vascular development. Mol Plant 9:1406–1414

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZM, Ma KW, Gao L, Hu Z, Schwizer S, Ma W, Song J (2017) Mechanism of host substrate acetylation by a Yop J family effector. Nature Plants 3:17115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wu S, Chen X, Liu C, Sheen J, Shan L, He P (2014) The Pseudomonas syringae effector HopF2 suppresses Arabidopsis immunity by targeting BAK1. Plant J 77:235–245

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu BO, Eom JS, Yang B (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82(4):632–643

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Deng K, Cheng Y, Zhong Z, Zhang T, Qi Y, Zhang Y (2017) CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci 8:288343

    Article  Google Scholar 

  • Zhu F, Xi DH, Yuan S, Xu F, Zhang DW, Lin HH (2014) Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. Mol Plant-Microbe Interact 27(6):567–577

    Article  CAS  PubMed  Google Scholar 

  • Zinovieva S, Vasyukova N, Udalova ZV, Gerasimova N (2013) The participation of salicylic and jasmonic acids in genetic and induced resistance of tomato to Meloidogyne incognita (Kofoid and White, 1919). Biol Bull 40(3):297–303

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simona Mariana Popescu or Sheikh Mansoor.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabi, Z., Manzoor, S., Nabi, S.U. et al. Pattern-Triggered Immunity  and Effector-Triggered Immunity: crosstalk and cooperation of PRR and NLR-mediated plant defense pathways during host–pathogen interactions. Physiol Mol Biol Plants 30, 587–604 (2024). https://doi.org/10.1007/s12298-024-01452-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-024-01452-7

Keywords

Navigation