Skip to main content
Log in

Morphological analysis of the 6b oncogene-induced enation syndrome

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The T-DNA 6b oncogene induces complex and partly unprecedented phenotypic changes in tobacco stems and leaves, which result from hypertrophy and hyperplasia with ectopic spot-like, ridge-like and sheet-like meristems.

The Agrobacterium T-DNA oncogene 6b causes complex growth changes in tobacco including enations; this unusual phenotype has been called “6b enation syndrome”. A detailed morphological and anatomical analysis of the aerial part of Nicotiana tabacum plants transformed with a dexamethasone-inducible dex-T-6b gene revealed several striking growth phenomena. Among these were: uniform growth of ectopic photosynthetic cells on the abaxial leaf side, gutter-like petioles with multiple parallel secondary veins, ectopic leaf primordia emerging behind large glandular trichomes, corniculate structures emerging from distal ends of secondary veins, pin-like structures with remarkable branching patterns, ectopic vascular strands in midveins and petioles extending down along the stem, epiascidia and hypoascidia, double enations and complete inhibition of leaf outgrowth. Ectopic stipule-like leaves and inverted leaves were found at the base of the petioles. Epinastic and hyponastic growth of petioles and midveins yielded complex but predictable leaf folding patterns. Detailed anatomical analysis of over sixty different 6b-induced morphological changes showed that the different modifications are derived from hypertrophy and abaxial hyperplasia, with ectopic photosynthetic cells forming spot-like, ridge-like and sheet-like meristems and ectopic vascular strands forming regular patterns in midveins, petioles and stems. Part of the enation syndrome is due to an unknown phloem-mobile enation factor. Graft experiments showed that the 6b mRNA is mobile and could be the enation factor. Our work provides a better insight in the basic effects of the 6b oncogene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

dpi:

Days post induction

EPC:

Extra photosynthetic cell

EVS:

Ectopic vascular strand

GST:

Glandular secreting trichome

References

  • Bar M, Ori N (2014) Leaf development and morphogenesis. Development 141:4219–4230

    Article  PubMed  CAS  Google Scholar 

  • Canaday J, Gérard JC, Crouzet P, Otten L (1992) Organization and functional analysis of three T-DNAs from the vitopine Ti plasmid pTiS4. Mol Gen Genet 235:292–303

    Article  PubMed  CAS  Google Scholar 

  • Chen K, de Borne Dorlhac, Szegedi E, Otten L (2014) Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J 80:669–682

    Article  PubMed  CAS  Google Scholar 

  • Clément B, Pollmann S, Weiler E, Urbanczyk-Wochniak E, Otten L (2006) The Agrobacterium vitis T-6b oncoprotein induces auxin-independent cell expansion in tobacco. Plant J 45:1017–1027

    Article  PubMed  Google Scholar 

  • Clément B, Perot J, Geoffroy P, Legrand M, Zon J, Otten L (2007) Abnormal accumulation of sugars and phenolics in tobacco roots expressing the Agrobacterium T-6b oncogene and the role of these compounds in 6b-induced growth. Mol Plant Microbe Interact 20:53–62

    Article  PubMed  Google Scholar 

  • de Candolle C (1902) Nouvelle étude des hypoascidies de Ficus. Bull Herb Boiss 2:753–763

    Google Scholar 

  • Fukushima K, Hasebe M (2014) Adaxial-abaxial polarity: the developmental basis of leaf shape diversity. Genesis 52:1–18

    Article  PubMed  Google Scholar 

  • Gális I, Simek P, Van Onckelen HA, Kakiuchi Y, Wabiko H (2002) Resistance of transgenic tobacco seedlings expressing the Agrobacterium tumefaciens C58-6b gene to growth-inhibitory levels of cytokinin is associated with elevated IAA levels and activation of phenylpropanoid metabolism. Plant Cell Physiol 43:939–950

    Article  PubMed  Google Scholar 

  • Gális I, Kakiuchi Y, Simek P, Wabiko H (2004) Agrobacterium tumefaciens AK-6b gene modulates phenolic compound metabolism in tobacco. Phytochemistry 65:169–179

    Article  PubMed  Google Scholar 

  • Grémillon L, Helfer A, Clément B, Otten L (2004) New plant growth-modifying properties of the Agrobacterium T-6b oncogene revealed by the use of a dexamethasone-inducible promoter. Plant J 37:218–228

    Article  PubMed  Google Scholar 

  • Helfer A (2001) Influence des genes orf8 et 6b d’Agrobacterium sur la croissance végétale. Dissertation, University of Strasbourg

  • Helfer A, Pien S, Otten L (2002) Functional diversity and mutational analysis of Agrobacterium 6B oncoproteins. Mol Genet Genomics 267:577–586

    Article  PubMed  CAS  Google Scholar 

  • Helfer A, Clément B, Michler P, Otten L (2003) The Agrobacterium oncogene AB-6b causes a graft-transmissible enation syndrome in tobacco. Plant Mol Biol 52:483–493

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas PJJ, den Dulk-Ras H, Schilperoort RA (1988) The Agrobacterium tumefaciens T-DNA 6b is an oncogene. Plant Mol Biol 11:791–794

    Article  PubMed  CAS  Google Scholar 

  • Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading into sink tissues. Plant Cell 11:309–322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ishibashi N, Kitakura S, Terakura S, Machida C, Machida Y (2014) Protein encoded by oncogene 6b from Agrobacterium tumefaciens has a reprogramming potential and histone chaperone-like activity. Front Plant Sci 5:1–7

    Article  Google Scholar 

  • Ito M, Machida Y (2015) Reprogramming of plant cells induced by 6b oncoproteins from the plant pathogen Agrobacterium. J Plant Res 128:423–435

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi Y, Gális I, Tamogami S, Wabiko H (2006) Reduction of polar auxin transport in tobacco by the tumorigenic Agrobacterium tumefaciens AK-6b gene. Planta 223:237–247

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi Y, Takahashi S, Wabiko H (2007) Modulation of the venation pattern of cotyledons of transgenic tobacco for the tumorigenic 6b gene of Agrobacterium tumefaciens AKE10. J Plant Res 120:259–268

    Article  PubMed  CAS  Google Scholar 

  • Kitakura S, Fujita T, Ueno Y, Terakura S, Wabiko H, Machida Y (2002) The protein encoded by oncogene 6b from Agrobacterium tumefaciens interacts with a nuclear protein of tobacco. Plant Cell 14:451–463

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kitakura S, Terakura S, Yoshioka Y, Machida C, Machida Y (2008) Interaction between Agrobacterium tumefaciens oncoprotein 6b and a tobacco nucleolar protein that is homologous to TNP1 encoded by a transposable element of Antirrhinum majus. J Plant Res 121:425–433

    Article  PubMed  CAS  Google Scholar 

  • Komari T (1990) Genetic characterization of a double-flowered tobacco plant obtained by a transformation experiment. Theor Appl Genet 80:167–171

    Article  PubMed  CAS  Google Scholar 

  • Levesque H, Delepelaire P, Rouzé P, Slightom J, Tepfer D (1988) Common evolutionary origin of the central portion of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol Biol 11:731–744

    Article  PubMed  CAS  Google Scholar 

  • Masters M (1869) Vegetable teratology. An account of the principal deviations from the usual construction of plants. Ray Society, London

  • Smith EW, Seltmann H (1979) Anatomy of decurrent extension from winged petiole of Nicotiana tabacum L. Bot Gaz 140:324–327

    Article  Google Scholar 

  • Spiegelman Z, Golan G, Wolf S (2013) Don’t kill the messenger: long-distance trafficking of mRNA molecules. Plant Sci 213:1–8

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Sato R, Takahashi M, Hashiba N, Ogawa A, Toyofuku K, Sawata T, Ohsawa Y, Ueda K, Wabiko H (2013) Ectopic localization of auxin and cytokinin in tobacco seedlings by the plant-oncogenic AK-6b gene of Agrobacterium tumefaciens AKE10. Planta 238:753–770

    Article  PubMed  CAS  Google Scholar 

  • Terakura S, Kitakura S, Ishikawa M, Ueno Y, Fujita T, Machida C, Wabiko H, Machida Y (2006) Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles. Plant Cell Physiol 47:664–672

    Article  PubMed  CAS  Google Scholar 

  • Terakura S, Ueno Y, Tagami H, Kitakura S, Machida C, Wabiko H, Aiba H, Otten L, Tsukagoshi H, Nakamura K, Machida Y (2007) An oncoprotein from the plant pathogen Agrobacterium has histone chaperone-like activity. Plant Cell 19:2855–2865

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tinland B, Huss B, Paulus F, Bonnard G, Otten L (1989) Agrobacterium tumefaciens 6b genes are strain-specific and affect the activity of auxin as well as cytokinin genes. Mol Gen Genet 219:217–224

    Article  CAS  Google Scholar 

  • Tinland B, Rohfritsch O, Michler P, Otten L (1990) Agrobacterium tumefaciens T-DNA gene 6b stimulates rol-induced root formation, permits growth at high auxin concentrations and increases root size. Mol Gen Genet 223:1–10

    Article  PubMed  CAS  Google Scholar 

  • Tinland B, Fournier P, Heckel T, Otten L (1992) Expression of a chimaeric heat-shock-inducible Agrobacterium 6b oncogene in Nicotiana rustica. Plant Mol Biol 18:921–930

    Article  PubMed  CAS  Google Scholar 

  • Wabiko H, Minemura M (1996) Exogenous phytohormone-independent growth and regeneration of tobacco plants transgenic for the 6b gene of Agrobacterium tumefaciens AKE10. Plant Physiol 112:939–951

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wagner GJ, Wang E, Shepherd W (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Waites R, Hudson A (1995) phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121:2143–2154

    CAS  Google Scholar 

  • Wang M, Soyano T, Machida S, Yang JY, Jung C, Chua NH, Yuan YA (2011) Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b. Genes Dev 25:64–76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

K.C. was supported by doctoral Grant 2011679003 from the Chinese Scholarship Council. We thank the IBMP gardeners for providing plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Léon Otten.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 2425 kb)

Supplementary material 2 (TIFF 1600 kb)

Supplementary material 3 (TIFF 2094 kb)

Supplementary material 4 (TIFF 3013 kb)

Supplementary material 5 (TIFF 1525 kb)

Supplementary material 6 (TIFF 2881 kb)

Supplementary material 7 (TIFF 3626 kb)

Supplementary material 8 (TIFF 4046 kb)

Supplementary material 9 (TIFF 2085 kb)

Supplementary material 10 (TIFF 1260 kb)

Supplementary material 11 (TIFF 5224 kb)

Supplementary material 12 (TIFF 980 kb)

Supplementary material 13 (TIFF 1784 kb)

Supplementary material 14 (TIFF 6946 kb)

Supplementary material 15 (TIFF 451 kb)

Supplementary material 16 (TIFF 1511 kb)

Supplementary material 17 (TIFF 5032 kb)

Supplementary material 18 (TIFF 2879 kb)

Supplementary material 19 (TIFF 3232 kb)

Supplementary material 20 (TIFF 1271 kb)

Supplementary material 21 (TIFF 2512 kb)

Supplementary material 22 (TIFF 2323 kb)

Supplementary material 23 (TIFF 3010 kb)

Supplementary material 24 (TIFF 1801 kb)

Supplementary material 25 (TIFF 3521 kb)

Supplementary material 26 (TIFF 3114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Otten, L. Morphological analysis of the 6b oncogene-induced enation syndrome. Planta 243, 131–148 (2016). https://doi.org/10.1007/s00425-015-2387-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2387-0

Keywords

Navigation