Skip to main content

Advertisement

Log in

Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The unicellular green alga Chlamydomonas reinhardtii is able to use photosynthetically provided electrons for the production of molecular hydrogen by an [FeFe]-hydrogenase HYD1 accepting electrons from ferredoxin PetF. Despite the severe sensitivity of HYD1 towards oxygen, a sustained and relatively high photosynthetic hydrogen evolution capacity is established in C. reinhardtii cultures when deprived of sulfur. One of the major electron sources for proton reduction under this condition is the oxidation of starch and subsequent non-photochemical transfer of electrons to the plastoquinone pool. Here we report on the induction of photosynthetic hydrogen production by Chlamydomonas upon nitrogen starvation, a nutritional condition known to trigger the accumulation of large deposits of starch and lipids in the green alga. Photochemistry of photosystem II initially remained on a higher level in nitrogen-starved cells, resulting in a 2-day delay of the onset of hydrogen production compared with sulfur-deprived cells. Furthermore, though nitrogen-depleted cells accumulated large amounts of starch, both hydrogen yields and the extent of starch degradation were significantly lower than upon sulfur deficiency. Starch breakdown rates in nitrogen or sulfur-starved cultures transferred to darkness were comparable in both nutritional conditions. Methyl viologen treatment of illuminated cells significantly enhanced the efficiency of photosystem II photochemistry in sulfur-depleted cells, but had a minor effect on nitrogen-starved algae. Both the degradation of the cytochrome b 6 f complex which occurs in C. reinhardtii upon nitrogen starvation and lower ferredoxin amounts might create a bottleneck impeding the conversion of carbohydrate reserves into hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

Chl:

Chlorophyll

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

LHCII:

Light-harvesting complex of PSII

NAD(P)H:

Nicotinamide adenine dinucleotide (phosphate)

PQ:

Plastoquinone

PSI, PSII:

Photosystem I, II

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

References

  • Abe J, Kubo T, Takagi Y, Saito T, Miura K, Fukuzawa H, Matsuda Y (2004) The transcriptional program of synchronous gametogenesis in Chlamydomonas reinhardtii. Curr Genet 46:304–315

    Article  PubMed  CAS  Google Scholar 

  • Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB, Tsygankov AA, Seibert M (2003) The dependence of algal H2 production on Photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 1607:153–160

    Article  PubMed  CAS  Google Scholar 

  • Ball SG, Dirick L, Decq A, Martiat J-C, Matagne R (1990) Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Sci 66:1–9

    Article  CAS  Google Scholar 

  • Bohme H (1977) On the role of ferredoxin and ferredoxin-NADP + reductase in cyclic electron transport of spinach chloroplasts. Eur J Biochem 72:283–289

    Article  PubMed  CAS  Google Scholar 

  • Bulte L, Wollman FA (1992) Evidence for a selective destabilization of an integral membrane protein, the cytochrome b6/f complex, during gametogenesis in Chlamydomonas reinhardtii. Eur J Biochem 204:327–336

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Newton AJ, Melis A (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res 84:289–296

    Article  PubMed  CAS  Google Scholar 

  • Chochois V, Dauvillee D, Beyly A, Tolleter D, Cuine S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen production in Chlamydomonas: photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism. Plant Physiol 151:631–640

    Article  PubMed  CAS  Google Scholar 

  • Cinco RM, MacInnis JM, Greenbaum E (1993) The role of carbon dioxide in light-activated hydrogen production by Chlamydomonas reinhardtii. Photosynth Res 38:27–33

    Article  CAS  Google Scholar 

  • Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275:17256–17262

    Article  PubMed  CAS  Google Scholar 

  • Cournac L, Latouche G, Cerovic Z, Redding K, Ravenel J, Peltier G (2002) In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol 129:1921–1928

    Article  PubMed  CAS  Google Scholar 

  • Davies JP, Yildiz F, Grossman AR (1994) Mutants of Chlamydomonas with aberrant responses to sulfur deprivation. Plant Cell 6:53–63

    Article  PubMed  CAS  Google Scholar 

  • Davies JP, Yildiz FH, Grossman A (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15:2150–2159

    PubMed  CAS  Google Scholar 

  • Desplats C, Mus F, Cuine S, Billon E, Cournac L, Peltier G (2009) Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. J Biol Chem 284:4148–4157

    Article  PubMed  CAS  Google Scholar 

  • Dodge AD (1971) The mode of action of the bipyridylium herbicides, paraquat and diquat. Endeavour 30:130–135

    Article  PubMed  CAS  Google Scholar 

  • Elrad D, Niyogi KK, Grossman AR (2002) A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell 14:1801–1816

    Article  PubMed  CAS  Google Scholar 

  • Finazzi G, Furia A, Barbagallo RP, Forti G (1999) State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1413:117–129

    Article  PubMed  CAS  Google Scholar 

  • Fischer N, Setif P, Rochaix JD (1997) Targeted mutations in the psaC gene of Chlamydomonas reinhardtii: preferential reduction of FB at low temperature is not accompanied by altered electron flow from photosystem I to ferredoxin. Biochemistry 36:93–102

    Article  PubMed  CAS  Google Scholar 

  • Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270:2750–2758

    Article  PubMed  CAS  Google Scholar 

  • Fouchard S, Hemschemeier A, Caruana A, Pruvost K, Legrand J, Happe T, Peltier G, Cournac L (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microb 71:6199–6205

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Gfeller RP, Gibbs M (1984) Fermentative metabolism of Chlamydomonas reinhardtii: I. Analysis of fermentative products from starch in dark and light. Plant Physiol 75:212–218

    Article  PubMed  CAS  Google Scholar 

  • Gfeller RP, Gibbs M (1985) Fermentative metabolism of Chlamydomonas reinhardtii: II. Role of plastoquinone. Plant Physiol 77:509–511

    Article  PubMed  CAS  Google Scholar 

  • Ghirardi ML, Togasaki RK, Seibert M (1997) Oxygen sensitivity of algal H2-production. Appl Biochem Biotechnol 63–65:141–151

    Article  PubMed  Google Scholar 

  • Ghirardi ML, Dubini A, Yu J, Maness PC (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61

    Article  PubMed  CAS  Google Scholar 

  • Ghysels B, Franck F (2010) Hydrogen photo-evolution upon S deprivation stepwise: an illustration of microalgal photosynthetic and metabolic flexibility and a step stone for future biotechnological methods of renewable H2 production. Photosynth Res 106:145–154

    Article  PubMed  CAS  Google Scholar 

  • Goldet G, Brandmayr C, Stripp ST, Happe T, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. J Am Chem Soc 131:14979–14989

    Article  PubMed  CAS  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714

    Article  PubMed  CAS  Google Scholar 

  • Grossman A (2000) Acclimation of Chlamydomonas reinhardtii to its nutrient environment. Protist 151:201–224

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10:190–198

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR, Catalanotti C, Yang W, Dubini A, Magneschi L, Subramanian V, Posewitz MC, Seibert M (2011) Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii. New Phytol 190:279–288

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269:1022–1032

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Naber JD (1993) Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 214:475–481

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Mosler B, Naber JD (1994) Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem 222:769–774

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Hemschemeier A, Winkler M, Kaminski A (2002) Hydrogenases in green algae: do they save the algae’s life and solve our energy problems? Trends Plant Sci 7:246–250

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego

    Google Scholar 

  • Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406

    Article  PubMed  CAS  Google Scholar 

  • Hemschemeier A, Happe T (2011) Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta 1807:919–926

    Google Scholar 

  • Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008a) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407

    Article  PubMed  CAS  Google Scholar 

  • Hemschemeier A, Jacobs J, Happe T (2008b) Biochemical and physiological characterization of the pyruvate formate-lyase Pfl1 of Chlamydomonas reinhardtii, a typically bacterial enzyme in a eukaryotic alga. Eukaryot Cell 7:518–526

    Article  PubMed  CAS  Google Scholar 

  • Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res 102:523–540

    Article  PubMed  CAS  Google Scholar 

  • Hicks GR, Hironaka CM, Dauvillee D, Funke RP, D’Hulst C, Waffenschmidt S, Ball SG (2001) When simpler is better. Unicellular green algae for discovering new genes and functions in carbohydrate metabolism. Plant Physiol 127:1334–1338

    Article  PubMed  CAS  Google Scholar 

  • Hipkin CR, Everest SA, Rees TAV, Syrett PJ (1982) Ammonium generation by nitrogen-starved cultures of Chlamydomonas reinhardii. Planta 154:587–592

    Article  CAS  Google Scholar 

  • Hiyama T, Ke B (1971) A new photosynthetic pigment, “P430”: its possible role as the primary electron acceptor of photosystem I. Proc Natl Acad Sci USA 68:1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Jacobs J, Pudollek S, Hemschemeier A, Happe T (2009) A novel, anaerobically induced ferredoxin in Chlamydomonas reinhardtii. Febs Lett 583:325–329

    Article  PubMed  CAS  Google Scholar 

  • Jans F, Mignolet E, Houyoux PA, Cardol P, Ghysels B, Cuine S, Cournac L, Peltier G, Remacle C, Franck F (2008) A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Natl Acad Sci USA 105:20546–20551

    Article  PubMed  CAS  Google Scholar 

  • Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44:146–155

    Article  PubMed  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK, Favre M (1973) Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol 80:575–599

    Article  PubMed  CAS  Google Scholar 

  • Laurinavichene T, Tolstygina I, Tsygankov A (2004) The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J Biotechnol 114:143–151

    Article  PubMed  CAS  Google Scholar 

  • Lemeille S, Rochaix JD (2010) State transitions at the crossroad of thylakoid signalling pathways. Photosynth Res 106:33–46

    Article  PubMed  CAS  Google Scholar 

  • Martin NC, Goodenough UW (1975) Gametic differentiation in Chlamydomonas reinhardtii. I. Production of gametes and their fine structure. J Cell Biol 67:587–605

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Chen HC (2005) Chloroplast sulfate transport in green algae–genes, proteins and effects. Photosynth Res 86:299–307

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Happe T (2004) Trails of green alga hydrogen research—from Hans Gaffron to new frontiers. Photosynth Res 80:401–409

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  PubMed  CAS  Google Scholar 

  • Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S, Terauchi AM (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim Biophys Acta 1763:578–594

    Article  PubMed  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  PubMed  CAS  Google Scholar 

  • Miller R, Wu G, Deshpande RR, Vieler A, Gartner K, Li X, Moellering ER, Zauner S, Cornish AJ, Liu B, Bullard B, Sears BB, Kuo MH, Hegg EL, Shachar-Hill Y, Shiu SH, Benning C (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752

    Article  PubMed  CAS  Google Scholar 

  • Mus F, Cournac L, Cardettini V, Caruana A, Peltier G (2005) Inhibitor studies on non-photochemical plastoquinone reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta 1708:322–332

    Article  PubMed  CAS  Google Scholar 

  • Park S, Rodermel SR (2004) Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis. Proc Natl Acad Sci USA 101:12765–12770

    Article  PubMed  CAS  Google Scholar 

  • Peltier G, Schmidt GW (1991) Chlororespiration: an adaptation to nitrogen deficiency in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 88:4791–4795

    Article  PubMed  CAS  Google Scholar 

  • Philipps G, Krawietz D, Hemschemeier A, Happe T (2011) A pyruvate formate lyase-deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen production in green algae. Plant J 66:330–340

    Article  PubMed  CAS  Google Scholar 

  • Plumley FG, Schmidt GW (1989) Nitrogen-dependent regulation of photosynthetic gene expression. Proc Natl Acad Sci USA 86:2678–2682

    Article  PubMed  CAS  Google Scholar 

  • Ravina CG, Chang CI, Tsakraklides GP, McDermott JP, Vega JM, Leustek T, Gotor C, Davies JP (2002) The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis. Plant Physiol 130:2076–2084

    Article  PubMed  CAS  Google Scholar 

  • Roessler PG, Lien S (1984) Purification of Hydrogenase from Chlamydomonas reinhardtii. Plant Physiol 75:705–709

    Article  PubMed  CAS  Google Scholar 

  • Sager R, Granick S (1954) Nutritional control of sexuality in Chlamydomonas reinhardtii. J Gen Physiol 37:729–742

    Article  PubMed  CAS  Google Scholar 

  • Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  • Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. Bmc Biotechnol 11:7

    Article  PubMed  CAS  Google Scholar 

  • Southgate DAT (1976) Determination of food carbohydrates. Applied Science Publishers, London

    Google Scholar 

  • Stern DB, Harris EH, Witman G (2008) The Chlamydomonas sourcebook: organellar and metabolic processes. Academic Press, New York

  • Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. P Natl Acad Sci USA 106:17331–17336

    Article  CAS  Google Scholar 

  • Stuart TS, Gaffron H (1972) The gas exchange of hydrogen-adapted algae as followed by mass spectrometry. Plant Physiol 50:136–140

    Article  PubMed  CAS  Google Scholar 

  • Surzycki R, Cournac L, Peltier G, Rochaix JD (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci USA 104:17548–17553

    Article  PubMed  CAS  Google Scholar 

  • Timmins M, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:35996

    Article  CAS  Google Scholar 

  • Tsygankov A, Kosourov S, Seibert M, Ghirardi ML (2002) Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. Int J Hydrogen Energ 27:1239–1244

    Article  CAS  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    Article  PubMed  CAS  Google Scholar 

  • Wellburn A (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spetrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Winkler M, Kuhlgert S, Hippler M, Happe T (2009) Characterization of the key step for light-driven hydrogen evolution in green algae. J Biol Chem 284:36620–36627

    Article  PubMed  CAS  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139

    Article  PubMed  CAS  Google Scholar 

  • Zabawinski C, Van Den Koornhuyse N, D’Hulst C, Schlichting R, Giersch C, Delrue B, Lacroix JM, Preiss J, Ball S (2001) Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J Bacteriol 183:1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Zhang LP, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the BMBF (H2-Designzelle), the DAAD (Project Based Personnel Exchange Programme with Spain, contract D/06/12793), the European Union (FP7, SolarH2 Consortium) and the VW foundation (LigH2t) is gratefully acknowledged. We are furthermore very thankful for fruitful suggestions and discussions with Emilio Fernández (University of Córdoba, Spain), Laurent Cournac (CEA Cadarache, France) and Gábor Bernát (Ruhr-University of Bochum, Germany) as well as for gifts of antibodies from Francis-André Wollman (CNRS—University of Paris 6, France), Jean-David Rochaix (University of Geneva, Switzerland) and Sungsoon Park (Aurora Biofuels, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Hemschemeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philipps, G., Happe, T. & Hemschemeier, A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii . Planta 235, 729–745 (2012). https://doi.org/10.1007/s00425-011-1537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1537-2

Keywords

Navigation