Skip to main content
Log in

Chloroplast sulfate transport in green algae – genes, proteins and effects

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This review summarizes evidence at the molecular genetic, protein and regulatory levels concerning the existence and function of a putative ABC-type chloroplast envelope-localized sulfate transporter in the model unicellular green alga Chlamydomonas reinhardtii. From the four nuclear genes encoding this sulfate permease holocomplex, two are coding for chloroplast envelope-targeted transmembrane proteins (SulP and SulP2), a chloroplast stroma-targeted ATP-binding protein (Sabc) and a substrate (sulfate)-binding protein (Sbp) that is localized on the cytosolic side of the chloroplast envelope. The sulfate permease holocomplex is postulated to consist of a SulP–SulP2 chloroplast envelope transmembrane heterodimer, flanked by the Sabc and the Sbp proteins on the stroma side and the cytosolic side of the inner envelope, respectively. The mature SulP and SulP2 proteins contain seven transmembrane domains and one or two large hydrophilic loops, which are oriented toward the cytosol. The corresponding prokaryotic-origin genes (SulP and SulP2) probably migrated from the chloroplast to the nuclear genome during the evolution of Chlamydomonas reinhardtii. These genes, or any of its homologues, have not been retained in vascular plants, e.g. Arabidopsis thaliana, although they are encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). The function of the SulP protein was probed in antisense transformants of C. reinhardtii having lower expression levels of the SulP gene. Results showed that cellular sulfate uptake capacity was lowered as a consequence of attenuated SulP gene expression in the cell, directly affecting rates of de novo protein biosynthesis in the chloroplast. The antisense transformants exhibited phenotypes of sulfate-deprived cells, displaying slow rates of light-saturated oxygen evolution, low levels of Rubisco in the chloroplast and low steady-state levels of the Photosystem II D1 reaction center protein. The role of the chloroplast sulfate transport in the uptake and assimilation of sulfate in Chlamydomonas reinhardtii is discussed along with its impact on the repair of Photosystem II from a frequently occurring photo-oxidative damage and H2-evolution related metabolism in this green alga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N Adir, S Shochat and I Ohad, Light-dependent D1 protein synthesis and translocation is regulated by reaction center II: reaction center II serves as an acceptor for the D1 precursor. J Biol Chem 265 (1990) 12563-12568

    PubMed  CAS  Google Scholar 

  • SF Altschul, TL Madden, AA Schäffer, J Zhang, Z Zhang, W Miller and DJ Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database search program. Nucleic Acids Res 25 (1997) 3389-3402

    Article  PubMed  CAS  Google Scholar 

  • GFL Ames, Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem 55 (1986) 397-425

    Article  PubMed  CAS  Google Scholar 

  • NHJ Arst, Genetic analysis of the first steps of sulphate metabolism in Aspergillus nidulan. Nature 219 (1968) 268-270

    Article  PubMed  CAS  Google Scholar 

  • JL Blanchard and M Lynch, Organellar genes: why do they end up in the nucleus?. Trends Genet 16 (2000) 315-320

    Article  PubMed  CAS  Google Scholar 

  • W Bottomley, D Spencer and PR Whitfeld, Protein synthesis in isolated spinach chloroplasts: comparison of light-driven and ATP-driven synthesis. Arch Biochem Biophys 164 (1974) 106-117

    Article  PubMed  CAS  Google Scholar 

  • A Breton and Y Surdin-Kerjan, Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetics study. J Bacteriol 132 (1977) 224-232

    PubMed  CAS  Google Scholar 

  • H Cao, L Zhang and A Melis, Bioenergetic and metabolic processes for the survival of sulfur-deprived Dunaliella salina (Chlorophyta). J Appl Phycol 13 (2001) 25-34

    Article  CAS  Google Scholar 

  • H-C Chen and A Melis, Localization and function of SulP, a nuclear-encoded chloroplast sulfate permease in Chlamydomonas reinhardtii. Planta 220 (2004) 198-210

    Article  PubMed  CAS  Google Scholar 

  • H-C Chen, K Yokthongwattana, AJ Newton and A Melis, SulP, a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii. Planta 218 (2003) 98-106

    Article  PubMed  CAS  Google Scholar 

  • Chen H-C, Newton AJ and Melis A (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res, in press

  • K Cline, Gateway to the chloroplast. Nature 403 (2000) 148-149

    Article  PubMed  CAS  Google Scholar 

  • JP Davies, FH Yildiz and A Grossman, Mutants of Chlamydomonas with aberrant responses to sulfur deprivation. Plant Cell 6 (1994) 53-63

    Article  PubMed  CAS  Google Scholar 

  • JP Davies, FH Yildiz and AR Grossman, Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15 (1996) 2150-2159

    PubMed  CAS  Google Scholar 

  • J Dreyfuss, Characterization of a sulfate- and thiosulfate-transporting system in Salmonella typhimurium. J Biol Chem 239 (1964) 2292-2297

    PubMed  CAS  Google Scholar 

  • ARJ Eaglesham and RJ Ellis, Protein synthesis in chloroplasts: II Light-driven synthesis of membrane protein by isolated pea chloroplasts. Biochim Biophys Acta 335 (1974) 396-407

    CAS  Google Scholar 

  • RMB Ferreira and ARN Teixeira, Sulfur starvation in Lemna leads to degradation of Ribulose-bisphosphate carboxylase without plant death. J Biol Chem 267 (1992) 7253-7257

    PubMed  CAS  Google Scholar 

  • ML Ghirardi, L Zhang, JW Lee, T Flynn, M Seibert, E Greenbaum and A Melis, Microalgae: a green source of renewable H2. Trend Biotechnol 18 (2000) 506-511

    Article  CAS  Google Scholar 

  • SM Gilbert, DT Clarkson, M Cambridge, H Lambers and MJ Hawkesford, SO 4 2− deprivation has an early effect on the content of ribulose-1,5-bisphosphate carboxylase/oxygenase and photosynthesis in young leaves of wheat. Plant Physiol 115 (1997) 1231-1239

    PubMed  CAS  Google Scholar 

  • M Giordano, V Pezzoni and R Hell, Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiol 124 (2000) 857-864

    Article  PubMed  CAS  Google Scholar 

  • L Green and A Grossman, Changes in sulfate transport characteristics and protein composition of Anacystis nidulans R2 during sulfur deprivation. J Bacteriol 170 (1988) 583-587

    PubMed  CAS  Google Scholar 

  • AR Grossman, EE Harris, C Hauser, PA Lefebvre, D Martinez, D Rokhsar, J Shrager, CD Silflow, DB Stern, O Vallon and Z Zhang, Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryotic Cell 2 (2003) 1137-1150

    Article  PubMed  CAS  Google Scholar 

  • A Grossman and H Takahashi, Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu Rev Plant Physiol Plant Mol Biol 52 (2001) 163-210

    Article  PubMed  CAS  Google Scholar 

  • JE Guenther and A Melis, The physiological significance of Photosystem II heterogeneity in chloroplasts. Photosynth Res 23 (1990) 105-109

    Article  CAS  Google Scholar 

  • R Hell, Molecular physiology of plant sulfur metabolism. Planta 202 (1997) 138-148

    Article  PubMed  CAS  Google Scholar 

  • MY Hirai, T Fujiwara, M Awazuhara, T Kimura, M Noji and K Saito, Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33 (2003) 651-663

    Article  PubMed  CAS  Google Scholar 

  • K Hofmann and W Stoffel, TMbase – a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374 (1993) 166

    Google Scholar 

  • T Kaneko, S Sato, H Kotani and A Tanaka, Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3 (1996) 109-136

    Article  PubMed  CAS  Google Scholar 

  • T Kataoka, A Watanabe-Takahashi, N Hayashi, M Ohnishi, T Mimura, P Buchner, MJ Hawkesford, T Yamaya and H Takahashi, Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16 (2004) 2693-2704

    Article  PubMed  CAS  Google Scholar 

  • P Kathir, M LaVoie, WJ Brazelton, NA Haas, PA Lefebvre and CD Silflow, Molecular map of the Chlamydomonas reinhardtii nuclear genome. Eukaryotic cell 2 (2003) 362-379

    Article  PubMed  CAS  Google Scholar 

  • Knauf U and Hachtel W (1999) A 22 kb fragment of the 53 kb plastid genome of the colourless alga Prototheka wickerhamii containing atp-, rpl-,rps-, rrn-, and trn-genes. Direct Submission to GenBank (NCBI web page: http://www.ncbi.nlm. nih.gov), Accession Number: AJ245645

  • C Kohn and J Schumann, Nucleotide sequence and homology comparison of two genes of the sulfate transport operon from the cyanobacterium Synechocystis sp. PCC6803. Plant Mol Biol 21 (1993) 409-412

    Article  PubMed  CAS  Google Scholar 

  • DE Laudenbach and A Grossman, Characterization and mutagenesis of sulfur-regulated genes in a cyanobacterium: evidence for function in sulfate transport. J Bacteriol 173 (1991) 2739-2750

    PubMed  CAS  Google Scholar 

  • C Lemieux, C Otis and M Turmel, Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403 (2000) 649-652

    Article  PubMed  CAS  Google Scholar 

  • T Leustek, MN Martin, J-A Bick and JP Davies, Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51 (2000) 141-165

    Article  PubMed  CAS  Google Scholar 

  • Z Lukaszkiewicz, Hyper-repressible operator-type mutant in sulphate permease gene of Aspergillus nidulans. Nature 259 (1976) 337-338

    Article  PubMed  CAS  Google Scholar 

  • A Maruyama-Nakashita, E Eri Inoue, A Watanabe-Takahashi, T Yamaya and H Takahashi, Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132 (2003) 597-605

    Article  PubMed  CAS  Google Scholar 

  • GA Marzluf, Genetic and biochemical studies of distinct sulfate permease species in different developmental stages of Neurospors crassa. Arch Biochem Biophys 138 (1970a) 254-263

    Article  CAS  Google Scholar 

  • GA Marzluf, Genetic and metabolic controls for sulfate metabolism in Neurospora crassa: isolation and study of chromate-resistant and sulfate transport-negative mutants. J Bacteriol 102 (1970b) 716-721

    CAS  Google Scholar 

  • AK Mattoo and M Edelman, Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32-kDa herbicide-binding protein. Proc Natl Acad Sci USA 84 (1987) 1497-1501

    Article  PubMed  CAS  Google Scholar 

  • A Melis, Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo?. Trend Plant Sci 4 (1999) 130-135

    Article  Google Scholar 

  • A Melis and T Happe, Hydrogen production: green algae as a source of energy. Plant Physiol 127 (2001) 740-748

    Article  PubMed  CAS  Google Scholar 

  • A Melis, L Zhang, M Forestier, ML Ghirardi and M Seibert, Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122 (2000) 127-135

    Article  PubMed  CAS  Google Scholar 

  • V Nikiforova, J Freitag, S Kempa, M Adamik, H Hesse and R Hoefgen, Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33 (2003) 633-650

    Article  PubMed  CAS  Google Scholar 

  • I Ohad, DJ Kyle and CJ Arntzen, Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J Cell Biol 99 (1984) 481-485

    Article  PubMed  CAS  Google Scholar 

  • K Ohyma, H Fukuzawa, T Kohchi, H Shirai and T Sano, Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322 (1986) 572-574

    Article  Google Scholar 

  • JD Palmer, The symbiotic birth and spread of plastids: how many times and whodunit?. J Phycol 39 (2003) 4-11

    Article  CAS  Google Scholar 

  • CG Ravina, C-I Chang, GP Tsakraklides, JP McDermott, JM Vega, T Leustek, C Gotor and JP Davies, The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and post-transcriptional control of cysteine biosynthesis. Plant Physiol 130 (2002) 2076-2084

    Article  PubMed  CAS  Google Scholar 

  • GM Roomans, GAY Kuypers, APR Theuvenet and GWFH Borst-Pauwels, Kinetics of sulfate uptake by yeast. Biochim Biophys Acta 551 (1979) 197-206

    Article  PubMed  CAS  Google Scholar 

  • K Saito, Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3 (2000) 188-195

    PubMed  CAS  Google Scholar 

  • K Saito, Sulfur assimilatory metabolism. the long & smelling road. Plant Physiol 136 (2004) 2443-2450

    Article  PubMed  CAS  Google Scholar 

  • M Schroda, O Vallon, FA Wollman and CF Beck, A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of PSII during and after photoinhibition. Plant Cell 11 (1999) 1165-1178

    Article  PubMed  CAS  Google Scholar 

  • CL Simpson and DB Stern, The treasure trove of algal chloroplast genomes. Surprises in architecture and gene content, and their functional implications. Plant Physiol 129 (2002) 957-966

    Article  PubMed  CAS  Google Scholar 

  • A Sirko, MM Hryniewicz, DM Hulanicka and A Boeck, Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172 (1990) 3351-3357

    PubMed  CAS  Google Scholar 

  • FW Smith, PM Ealing, MJ Hawkesford and DT Clarkson, Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA 92 (1995) 9373-9377

    Article  PubMed  CAS  Google Scholar 

  • H Takahashi, W Asanuma and K Saito, Cloning of an Arabidopsis cDNA encoding a chloroplast localizing sulfate transporter isoform. J Exp Bot 50 (1999) 1713-1714

    Article  CAS  Google Scholar 

  • H Takahashi, A Watanabe-Takahashi, FW Smith, M Blake-Kalff, MJ Hawkesford and K Saito, The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23 (2000) 171-182

    Article  PubMed  CAS  Google Scholar 

  • H Takahashi, A Watanabe-Takahashi and T Yamaya, T-DNA insertion mutagenesis of sulfate transporters in Arabidopsis. In: J-C Davidian, D Grill, LJ Kok de, I Stulen, MJ Hawkesford, E Schnug and H Rennenberg (eds.) Sulfur Transport and Assimiltion in Plants,. Backhus Publishers: Leiden, The Netherlands (2003) pp. 339-340

    Google Scholar 

  • A Tomitani, K Okada, H Miyashita, HCP Matthijs, T Ohno and A Tanaka, Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400 (1999) 159-162

    Article  PubMed  CAS  Google Scholar 

  • M Turmel, C Otis and C Lemieux, The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci USA 96 (1999) 10248-10253

    Article  PubMed  CAS  Google Scholar 

  • C Vasilikiotis and A Melis, Photosystem II reaction center damage and repair cycle: chloroplast acclimation strategy to irradiance stress. Proc Natl Acad Sci USA 91 (1994) 7222-7226

    Article  PubMed  CAS  Google Scholar 

  • T Wakasugi, T Nagai, M Kapoor, M Sugita and M Ito, Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA 94 (1997) 5967-5972

    Article  PubMed  CAS  Google Scholar 

  • DD Wykoff, JP Davies, A Melis and AR Grossman, The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117 (1998) 129-139

    Article  PubMed  CAS  Google Scholar 

  • FH Yildiz, JP Davies and A Grossman, Characterization of sulfate transport in Chlamydomonas reinhardtii during sulfur-limited and sulfur-sufficient growth. Plant Physiol 104 (1994) 981-987

    PubMed  CAS  Google Scholar 

  • K Yokthongwattana, B Chrost, S Behrman, C Casper-Lindley and A Melis, Photosystem II damage and repair cycle in the green alga Dunaliella salina: Involvement of a chloroplast-localized HSP70. Plant Cell Physiol 42 (2001) 1389-1397

    Article  PubMed  CAS  Google Scholar 

  • N Yoshimoto, H Takahashi, FW Smith, T Yamaya and K Saito, Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in A. thaliana. Plant J 29 (2002) 465-470

    Article  PubMed  CAS  Google Scholar 

  • L Zhang, T Happe and A Melis, Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214 (2002) 552-561

    Article  PubMed  CAS  Google Scholar 

  • L Zhang and A Melis, Probing green algal hydrogen production. Phil Trans R Soc Lond Biol Sci 357 (2002) 1499-1509

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Melis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melis, A., Chen, HC. Chloroplast sulfate transport in green algae – genes, proteins and effects. Photosynth Res 86, 299–307 (2005). https://doi.org/10.1007/s11120-005-7382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-005-7382-z

Keywords

Navigation