Skip to main content
Log in

Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Stress tolerance is currently one of the major research topics in plant biology because of the challenges posed by changing climate and increasing demand to grow crop plants in marginal soils. Increased Zn tolerance and accumulation has been reported in tobacco expressing the glyoxalase 1-encoding gene from Brassica juncea. Previous studies in our laboratory showed some Zn tolerance-correlated differences in the levels of glyoxalase 1-like protein among accessions of Zn hyperaccumulator Thlaspi caerulescens. We have now isolated the corresponding gene (named here TcGLX1), including ca. 570 bp of core and proximal promoter region. The predicted protein contains three glyoxalase 1 motifs and several putative sites for post-translational modification. In silico analysis predicted a number of cis-acting elements related to stress. The expression of TcGLX1 was not responsive to Zn. There was no correlation between the levels of TcGLX1 expression and the degrees of Zn tolerance or accumulation among T. caerulescens accessions nor was there co-segregation of TcGLX1 expression with Zn tolerance or Zn accumulation among F3 lines derived from crosses between plants from accessions with contrasting phenotypes for these properties. No phenotype was observed in an A. thaliana T-DNA insertion line for the closest A. thaliana homolog of TcGLX1, ATGLX1. These results suggest that glyoxalase 1 or at least the particular isoform studied here is not a major determinant of Zn tolerance in the Zn hyperaccumulator plant T. caerulescens. In addition, ATGLX1 is not essential for normal Zn tolerance in the non-tolerant, non-accumulator plant A. thaliana. Possible explanations for the apparent discrepancy between this and previous studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

GA:

Gibberellic acid

GLX1:

Glyoxalase 1

GLX2:

Glyoxalase 2

PCR:

Polymerase chain reaction

Q-PCR:

Quantitative polymerase chain reaction

TAIL-PCR:

Thermal asymmetric interlaced polymerase chain reaction

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmid I, Guzman P, Aguilar-Henonin L, Schmidt M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Amedeo P, Habu Y, Afsar K, Scheid OM, Paszkowski J (2000) Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature 405:203–206

    Article  PubMed  CAS  Google Scholar 

  • Assunção AGL, Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003a) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419

    Article  Google Scholar 

  • Assunção AGL, Ten Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003b) A cosegregation analysis of zinc (Zn) accumulation and Zn tolerance in the Zn hyperaccumulator Thlaspi caerulescens. New Phytol 159:383–390

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bhomkar P, Upadhyay CP, Saxena M, Muthusamy A, Prakash NS, Pooggin M, Hohn T, Sarin NB (2008) Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Mol Breeding 22:169–181

    Article  CAS  Google Scholar 

  • Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genom 9:561

    Article  Google Scholar 

  • Chen ZY, Brown RL, Damann KE, Cleveland TE (2004) Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation. Phytopathology 94:938–945

    Article  PubMed  CAS  Google Scholar 

  • Clugston SL, Daub E, Honek JF (1998) Identification of glyoxalase I sequences in Brassica oleracea and Sporobolus stapfianus: evidence for gene duplication events. J Mol Evol 47:230–234

    Article  PubMed  CAS  Google Scholar 

  • Deniau AX, Pieper B, Ten Bookum WM, Lindhout P, Aarts MGM, Schat H (2006) QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theor Appl Genet 113:907–920

    Article  PubMed  CAS  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res 19:1349

    Article  PubMed  CAS  Google Scholar 

  • Espartero J, Sanchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol 29:1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Fleming T, Rabbani N, Thornalley PJ (2008) Preparation of nucleotide advanced glycation endproducts—imidazopurinone adducts formed by glycation of deoxyguanosine with glyoxal and methylglyoxal. Ann NY Acad Sci 1126:280–282

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  PubMed  CAS  Google Scholar 

  • Hanhineva KJ, Kärenlampi SO (2007) Production of transgenic strawberries by temporary immersion bioreactor system and verification by TAIL-PCR. BMC Biotechnol 7:11

    Article  PubMed  Google Scholar 

  • Hossain MA, Fujita M (2009) Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotechnol Biochem 73:2007–2013

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3:53–64

    CAS  Google Scholar 

  • Jain M, Choudhary D, Kale RK, Bhalla-Sarin N (2002) Salt- and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). Physiol Plant 114:499–505

    Article  PubMed  CAS  Google Scholar 

  • Johansen KS, Svendsen I, Rasmussen SK (2000) Purification and cloning of the two domain glyoxalase I from wheat bran. Plant Sci 155:11–20

    Article  PubMed  CAS  Google Scholar 

  • Kalapos MP (2008) The tandem of free radicals and methylglyoxal. Chem Biol Interact 171:251–271

    Article  PubMed  CAS  Google Scholar 

  • Khan MMK, Jan A, Karibe H, Komatsu S (2005) Identification of phosphoproteins regulated by gibberellin in rice leaf sheath. Plant Mol Biol 58:27–40

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Xu J, Shi J, Li H, Li B (2010) Molecular cloning and characterization of a novel glyoxalase I gene TaGly I in wheat (Triticum aestivum L.). Mol Biol Rep 37:729–735

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from PI and YAC clones for chromosome walking. Genomics 25:674–681

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Maeta K, Izawa S, Inoue Y (2005) Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 280:253–260

    PubMed  CAS  Google Scholar 

  • Martins AMTBS, Cordeiro CAA, Ponces Freire AMJ (2001) In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Lett 499:41–44

    Article  PubMed  CAS  Google Scholar 

  • Meerts P, Van Isacker N (1997) Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecol 133:221–231

    Article  Google Scholar 

  • Paulus C, Köllner B, Jacobsen HJ (1993) Physiological and biochemical characterization of glyoxalase I, a general marker for cell proliferation, from a soybean cell suspension. Planta 189:561–566

    Article  PubMed  CAS  Google Scholar 

  • Price CL, Knight SC (2009) Methylglyoxal: possible link between hyperglycaemia and immune suppression? Trends Endocrinol Metab 20:312–317

    Article  PubMed  CAS  Google Scholar 

  • Rabbani N, Thornalley PJ (2008) The dicarbonyl proteome: proteins susceptible to dicarbonyl glycation at functional sites in health, aging, and disease. Ann N Y Acad Sci 1126:124–127

    Article  PubMed  CAS  Google Scholar 

  • Rath J, Gowri VS, Chauhan SC, Padmanabhan PK, Srinivasan N, Madhubala R (2009) A glutathione-specific aldose reductase of Leishmania donovani and its potential implications for methylglyoxal detoxification pathway. Gene 429:1–9

    Article  PubMed  CAS  Google Scholar 

  • Rigola D, Fiers M, Vurro E, Aarts MGM (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. New Phytol 170:753–766

    Article  PubMed  CAS  Google Scholar 

  • Roy SD, Saxena M, Bhomkar PS, Pooggin M, Hohn T, Bhalla-Sarin N (2008) Generation of marker free salt tolerant transgenic plants of Arabidopsis thaliana using the gly 1 gene and cre gene under inducible promoters. Plant Cell Tiss Organ Cult 95:1–11

    Article  CAS  Google Scholar 

  • Schat H, Vooijs R, Kuiper E (1996) Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50:1888–1895

    Article  CAS  Google Scholar 

  • Shin R, Alvarez S, Burch AY, Jez JM, Schachtman DP (2007) Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci USA 104:6460–6465

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623

    Article  PubMed  CAS  Google Scholar 

  • Skipsey M, Andrews CJ, Townson JK, Jepson I, Edwards R (2000) Cloning and characterization of glyoxalase I from soybean. Arch Biochem Biophys 374:261–268

    Article  PubMed  CAS  Google Scholar 

  • Takatsume Y, Izawa S, Inoue Y (2004) Identification of thermostable glyoxalase I in the fission yeast Schizosaccharomyces pombe. Arch Microbiol 181:371–377

    Article  PubMed  CAS  Google Scholar 

  • Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Asp Med 14:287–371

    Article  CAS  Google Scholar 

  • Thornalley PJ (2003) Protecting the genome: defense against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy. Biochem Soc Trans 31:1372–1377

    Article  PubMed  CAS  Google Scholar 

  • Tuomainen MH, Nunan N, Lehesranta SJ, Tervahauta AI, Hassinen VH, Schat H, Koistinen KM, Auriola S, McNicol J, Kärenlampi SO (2006) Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions. Proteomics 6:3696–3706

    Article  PubMed  CAS  Google Scholar 

  • Tuomainen M, Tervahauta A, Hassinen V, Schat H, Koistinen KM, Lehesranta S, Rantalainen K, Häyrinen J, Auriola S, Anttonen M, Kärenlampi S (2010) Proteomics of Thlaspi caerulescens accessions and an inter-accession cross segregating for zinc accumulation. J Exp Bot 61:1075–1087

    Article  PubMed  CAS  Google Scholar 

  • Usui Y, Nakase M, Hotta H, Urisu A, Aoki N, Kitajima K, Matsuda T (2001) A 33-kDa allergen from rice (Oryza sativa L. Japonica). cDNA cloning, expression, and identification as a novel glyoxalase I. J Biol Chem 276:11376–11381

    Article  PubMed  CAS  Google Scholar 

  • Veena, Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005a) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67

    Article  PubMed  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005b) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the EC FP5 project ‘PHYTAC’ (QLRT-2001-00429) and by the Academy of Finland (projects 53885 and 122338). Marjo Tuomainen wishes to thank The Finnish Cultural Foundation of Northern Savo and Central Fund, Finnish Concordia Fund and The Kuopio Naturalists’ Society for personal grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjo Tuomainen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 61.7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuomainen, M., Ahonen, V., Kärenlampi, S.O. et al. Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens . Planta 233, 1173–1184 (2011). https://doi.org/10.1007/s00425-011-1370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1370-7

Keywords

Navigation