Skip to main content
Log in

Feedback equilibrium control during human standing

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Equilibrium maintenance during standing in humans was investigated with a 3-joint (ankle, knee and hip) sagittal model of body movement. The experimental paradigm consisted of sudden perturbations of humans in quiet stance by backward displacements of the support platform. Data analysis was performed using eigenvectors of motion equation. The results supported three conclusions. First, independent feedback control of movements along eigenvectors (eigenmovements) can adequately describe human postural responses to stance perturbations. This conclusion is consistent with previous observations (Alexandrov et al., 2001b) that these same eigenmovements are also independently controlled in a feed-forward manner during voluntary upper-trunk bending. Second, independent feedback control of each eigenmovement is sufficient to provide its stability. Third, the feedback loop in each eigenmovement can be modeled as a linear visco-elastic spring with delay. Visco-elastic parameters and time-delay values result from the combined contribution of passive visco-elastic mechanisms and sensory systems of different modalities

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov AV., Frolov AA., Massion J. (1998). Axial synergies during human upper trunk bending. Exp Brain Res 118:210–220

    Article  PubMed  CAS  Google Scholar 

  • Alexandrov AV., Frolov AA., Massion J. (2001a). Biomechanical analysis of movement strategies in human forward trunk bending. I. Modeling. Biol Cybern 84:425–434

    Article  CAS  Google Scholar 

  • Alexandrov AV., Frolov AA., Massion J. (2001b). Biomechanical analysis of movement strategies in human forward trunk bending. II. Experimental study. Biol Cybern 84:435–443

    Article  CAS  Google Scholar 

  • Alexandrov AV., Frolov AA., Horak FB., Carlson-Kuhta P., Park S. (2004). Biomechanical analysis of strategies of equilibrium control during human upright standing. Russian J Biomech 8(3):28–42

    Google Scholar 

  • Barin K. (1989). Evaluation of a generalized model of human postural dynamics and control in the sagittal plane. Biol Cybern 61:37–50

    Article  PubMed  CAS  Google Scholar 

  • Corless RM., Gonnet GH., Hare DEG., Jeffrey DJ., Knuth DE. (1996). On The Lambert W Function. Advances in Computational Mathematics 5:329–359

    Article  Google Scholar 

  • Diener H., Horak F., Nashner LM. (1988). Influence of stimulus parameters on human postural responses. J Neurophysiol 59:1888–1895

    PubMed  CAS  Google Scholar 

  • Feldman AG., Ostry DJ. (2003). A critical evaluation of the force control hypothesis in motor control. Exp Brain Res. 153(3):275–88

    Article  PubMed  Google Scholar 

  • Fitzpatrick R., Burke D., Gandevia SC. (1996). Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances. J Neurophysiol 76:3994–4008

    PubMed  CAS  Google Scholar 

  • Gurfinkel VS., Lipshits MI., Popov K.Ye. (1974). Is the stretch reflex the main mechanism in the system of regulation of the vertical posture of man?. Biofizika 19:744–748

    PubMed  CAS  Google Scholar 

  • Gurfinkel VS., Ivanenko Yu P., Levik Yu S., Babakova IA. (1995). Kinesthetic reference for human orthograde posture. Neuroscience 68:229–243

    Article  PubMed  CAS  Google Scholar 

  • Hainaut K., Duchateau J., Desmedt J. (1981). Differential effects on slow and fast motor units of different programs of brief daily muscle training in man. In: Desmedt J (eds). Motor units types, recruitment and plasticity in health and disease. Karger, Basel 9:241–249

  • He J., Levin VS. Loeb GE. (1991). Feedback gain for correcting small perturbations to standing posture. IEEE Trans Autom Control 36:322–332

    Article  Google Scholar 

  • Hof AL. (1998). In vivo measurement of series elasticity release curve of human triceps surae muscle. J Biomech 31:793–800

    Article  PubMed  CAS  Google Scholar 

  • Horak FB., Macpherson JM. (1996). Postural orientation and equilibrium. In: Rowell L.B., Shepherd J.T (eds). Handbook of Physiology. Section 12. Oxford University Press, New York-Oxford, pp. 255–292

    Google Scholar 

  • Horak FB., Nashner LM. (1986). Central programming of postural movements: adaptation to altered support surface configurations. J Neurophysiol 55:1369–1381

    PubMed  CAS  Google Scholar 

  • Horak F., Diener H., Nashner L. (1989). Influence of central set on human postural responses. J Neurophysiol 62:841–853

    PubMed  CAS  Google Scholar 

  • Kiemel T., Kelvin SO., Jeka JJ. (2002). Multisensory fusion and stochastic structure of postural sway. Biol Cybern 87:262–277

    Article  PubMed  Google Scholar 

  • Koshland GF., Hasan Z. (2000). Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions. Exp Brain Res 132(4):485–499

    Article  PubMed  CAS  Google Scholar 

  • Kuo A., Zajac F. (1993). Human standing posture: Multijoint movement strategies based on biomechanical constraints. Prog Brain Res 97:349–358

    Article  PubMed  CAS  Google Scholar 

  • Kuo AF. (1995). An optimal control model for analyzing human postural balance. IEEE TransBiomed Engin 42:87–101

    Article  CAS  Google Scholar 

  • Matthews PBC. (1972). Mammalian muscle receptors and their central actions. Arnold, London

    Google Scholar 

  • Morasso PG., Schieppati M. (1999). Can muscle stiffness alone stabilize upright standing?. J Neurophysiol 83:1622–1626

    Google Scholar 

  • Micheau P., Kron A., Bourassa P. (2003). Evaluation of the lambda model for human postural control during ankle strategy. Biol Cybern 89:227–236

    Article  PubMed  Google Scholar 

  • Nashner LM., McCollum G. (1985). The organization of human postural movements: a formal basis é experimental synthesis. Behav Brain Sci 8:135–172

    Article  Google Scholar 

  • Orfandis SJ. (1996). Introduction to signal processing. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Park S., Horak FB., Kuo AD. (2004). Postural feedback responses scale with biomechanical constraints in human standing. Exp Brain Res 154:417–427

    Article  PubMed  Google Scholar 

  • Peterka RJ. (2002). Sensorimotor integration in human postural control. J Neurophysiol 85:1097–1118

    Google Scholar 

  • Rack PMH. (1981). Limitation of sensory feedback in control of posture and movement. In: The nervous system. Motor control. Bethesda, MD: Am. Physiol. Soc. section. 1, vol. II: 229–256

  • Runge CF., Shupert CL., Horak FB., Zajac FE. (1999). Ankle ■ hip postural strategies defined by joint torques. Gait ■ Posture 10:161–170

    Article  PubMed  CAS  Google Scholar 

  • Smeets JBJ., van der Gon JJD. (1993). An unsupervised neural network model for the development of reflex co-ordination. Biol Cybern 70:417–425

    Article  Google Scholar 

  • van der Kooij H., Jacobs R., Koopman B., Grootenboer H. (1999). A multisensory integration model of human stance control. Biol Cybern 80:299–308

    Article  PubMed  Google Scholar 

  • van der Kooij H., Jacobs R., Koopman B., van der Helm F. (2001). An adaptive model of sensory integration in a dynamic environment applied to human stance control. Biol Cybern 84:103–115

    Article  PubMed  Google Scholar 

  • Winter DA. (1990). Biomechanics and motor control in human movement (Second ed.). John Wiley and Sons, New York

    Google Scholar 

  • Winter DA., Patla AE., Prince F., Ishac M., Gielo-Perczak K. (1998). Stiffness control of balance in quiet standing. J Neurophysiol 80:1211–1221

    PubMed  CAS  Google Scholar 

  • Winter DA., Patla AE., Rietdyk S., Ishac M. (2001). Ankle muscle stiffness in the control of balance during quiet standing. J Neurophysiol 85:2630–2633

    PubMed  CAS  Google Scholar 

  • Wolpert DM., Miall RC., Kawato M. (1998). Internal models in the cerebellum. TrendsCogn Sci 2:338–347

    Article  Google Scholar 

  • Yang JF., Winter DA., Wells RP. (1990). Postural dynamics in the standing human. Biol Cybern 62:309–320

    Article  PubMed  CAS  Google Scholar 

  • Zhao W., Wu P. (1996). Effect of time-delay in feedback on human stability – a computer study. 20th annual meeting of the American Society of Biomechanics, Atlanta

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AV. Alexandrov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, A., Frolov, A., Horak, F. et al. Feedback equilibrium control during human standing. Biol Cybern 93, 309–322 (2005). https://doi.org/10.1007/s00422-005-0004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0004-1

Keywords

Navigation