Skip to main content
Log in

Biomechanical analysis of movement strategies in human forward trunk bending. I. Modeling

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract.

 Two behavioral goals are achieved simultaneously during forward trunk bending in humans: the bending movement per se and equilibrium maintenance. The objective of the present study was to understand how the two goals are achieved by using a biomechanical model of this task. Since keeping the center of pressure inside the support area is a crucial condition for equilibrium maintenance during the movement, we decided to model an extreme case, called “optimal bending”, in which the movement is performed without any center of pressure displacement at all, as if standing on an extremely narrow support. The “optimal bending” is used as a reference in the analysis of experimental data in a companion paper. The study is based on a three-joint (ankle, knee, and hip) model of the human body and is performed in terms of “eigenmovements”, i.e., the movements along eigenvectors of the motion equation. They are termed “ankle”, “hip”, and “knee” eigenmovements according to the dominant joint that provides the largest contribution to the corresponding eigenmovement. The advantage of the eigenmovement approach is the presentation of the coupled system of dynamic equations in the form of three independent motion equations. Each of these equations is equivalent to the motion equation for an inverted pendulum. Optimal bending is constructed as a superposition of two (hip and ankle) eigenmovements. The hip eigenmovement contributes the most to the movement kinematics, whereas the contributions of both eigenmovements into the movement dynamics are comparable. The ankle eigenmovement moves the center of gravity forward and compensates for the backward center of gravity shift that is provoked by trunk bending as a result of dynamic interactions between body segments. An important characteristic of the optimal bending is the timing of the onset of each eigenmovement: the ankle eigenmovement onset precedes that of the hip eigenmovement. Without an earlier onset of the ankle eigenmovement, forward bending on the extremely narrow support results in falling backward. This modeling approach suggests that during trunk bending, two motion units – the hip and ankle eigenmovements – are responsible for the movement and for equilibrium maintenance, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 1 July 1999 / Accepted in revised form: 23 October 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, A., Frolov, A. & Massion, J. Biomechanical analysis of movement strategies in human forward trunk bending. I. Modeling. Biol Cybern 84, 425–434 (2001). https://doi.org/10.1007/PL00007986

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00007986

Keywords

Navigation