Skip to main content
Log in

A critical evaluation of the force control hypothesis in motor control

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The ability to formulate explicit mathematical models of motor systems has played a central role in recent progress in motor control research. As a result of these modeling efforts and in particular the incorporation of concepts drawn from control systems theory, ideas about motor control have changed substantially. There is growing emphasis on motor learning and particularly on predictive or anticipatory aspects of control that are related to the neural representation of dynamics. Two ideas have become increasingly prominent in mathematical modeling of motor function—forward internal models and inverse dynamics. The notion of forward internal models which has drawn from work in adaptive control arises from the recognition that the nervous system takes account of dynamics in motion planning. Inverse dynamics, a complementary way of adjusting control signals to deal with dynamics, has proved a simple means to establish the joint torques necessary to produce desired movements. In this paper, we review the force control formulation in which inverse dynamics and forward internal models play a central role. We present evidence in its favor and describe its limitations. We note that inverse dynamics and forward models are potential solutions to general problems in motor control—how the nervous system establishes a mapping between desired movements and associated control signals, and how control signals are adjusted in the context of motor learning, dynamics and loads. However, we find little empirical evidence that specifically supports the inverse dynamics or forward internal model proposals per se. We further conclude that the central idea of the force control hypothesis—that control levels operate through the central specification of forces—is flawed. This is specifically evident in the context of attempts to incorporate physiologically realistic muscle and reflex mechanisms into the force control model. In particular, the formulation offers no means to shift between postures without triggering resistance due to postural stabilizing mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Adamovich SV, Levin MF, Feldman AG (1997) Central modifications of reflex parameters may underlie the fastest arm movements. J Neurophysiol 77:1460–1469

    CAS  PubMed  Google Scholar 

  • Adamovich SV, Archambault PS, Ghafouri M, Levin MF, Poizner H, Feldman AG (2001) Hand trajectory invariance in reaching movements involving the trunk. Exp Brain Res 138:288–303

    CAS  PubMed  Google Scholar 

  • Almeida GL, Hong DA, Corcos D, Gottlieb GL (1995) Organizing principles for voluntary movement: extending single-joint rules. J Neurophysiol 74:1374–1381

    CAS  PubMed  Google Scholar 

  • Angel RW, Eppler W, Iannone A (1965) Silent period produced by unloading of muscle during voluntary contraction. J Physiol 180:864–870

    CAS  PubMed  Google Scholar 

  • Asatryan DG, Feldman AG (1965) Functional tuning of the nervous system with control of movements or maintenance of a steady posture: I. Mechanographic analysis of the work of the joint on execution of a postural tasks. Biophys USSR 10:925–935

    Google Scholar 

  • Balasubramaniam R, Feldman AG (2003) Guiding movements without redundancy problems. In: Kelso S, Jirsa V (eds) Coordination dynamics.

  • Barto AG, Fagg AH, Sitkoff N, Houk JC (1999) A cerebellar model of timing and prediction in the control of reaching. Neural Comput 11:565–594

    CAS  PubMed  Google Scholar 

  • Bastian AJ, Martin TA, Keating JG, Thach WT (1996) Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol 76:492–509

    CAS  PubMed  Google Scholar 

  • Belen’kii VY, Gurfinkel VS, Pal’tsev Y (1967) Elements of control of voluntary movements. Biofizika 10:135–141

    Google Scholar 

  • Berkinblit MB, Deliagina TG, Orlovsky GN, Feldman AG (1978) Oscillations of the membrane potential of motoneurons during generation of scratching. Neurofiziologia 10:92–94

    CAS  Google Scholar 

  • Bernstein NA (1967) The coordination and regulation of movements. Pergamon, Oxford

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60

    CAS  PubMed  Google Scholar 

  • Brown IE, Loeb GE (2000) A reductionist approach to creating and using neuromuscular models. In: Winters JM, Crago PE (eds) Biomechanics and neural control of posture and movement. Springer, New York

  • Conditt MA, Gandolfo F, Mussa-Ivaldi FA (1997) The motor system does not learn the dynamics of the arm by rote memorization of past experience. J Neurophysiol 78:554–560

    CAS  PubMed  Google Scholar 

  • Cooke JD, Virji-Babul N (1995) Reprogramming of muscle activation patterns at the wrist in compensation for elbow reaction torques during planar two-joint arm movements. Exp Brain Res 106:177–180

    CAS  PubMed  Google Scholar 

  • Corcos DM, Gottlieb GL, Agarwal GC (1989) Organizing principles for single joint movements. II. A speed-sensitive strategy. J Neurophysiol 62:358–368

    CAS  PubMed  Google Scholar 

  • Desmedt JE, Godaux E (1977) Ballistic contractions in man: characteristic recruitment pattern of single motor units of the tibialis anterior muscle in man. J Physiol 264:673–693

    CAS  PubMed  Google Scholar 

  • Elsgoltz LE, Norkin SB (1971) Introduction to theory of differential equations with delayed variables. “Science” Publishing House, Moscow

  • Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31:14–27

    CAS  PubMed  Google Scholar 

  • Feldman AG, Latash ML (1982) Interaction of afferent and efferent signals underlying joint position sense: empirical and theoretical approaches. J Mot Behav 14:174–193

    Google Scholar 

  • Feldman AG, Ostry DJ, Levin MF, Gribble PL, Mitnitski AB (1998) Recent tests of the equilibrium-point hypothesis (λ model). Mot Control 2:189–205

    CAS  Google Scholar 

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17:1519–1528

    CAS  PubMed  Google Scholar 

  • Flanagan JR, Ostry DJ, Feldman AG (1993) Control of trajectory modifications in target-directed reaching. J Mot Behav 25:140–152

    PubMed  Google Scholar 

  • Flash T, Gurevich I (1997) Models of motor adaptation and impedance control in human arm movements. In: Morasso P, Sanguineti V (eds) Self-organization, computational maps and motor control. Elsevier North-Holland, Amsterdam, pp 423–481

  • Fuchs AF, Kaneko CRS (1985) A brain stem generator for saccadic eye movements. In: Evarts EV, Wise SP, Bousfield D (eds) The motor systems in neurobiology. Elsevier Biomedical, Amsterdam, pp 126–132

  • Gandolfo F, Mussa-Ivaldi FA, Bizzi E (1996) Motor learning by field approximation. Proc Natl Acad Sci U S A 93:3843–3846

    Article  CAS  PubMed  Google Scholar 

  • Gandolfo F, Li C, Benda BJ, Schioppa CP, Bizzi E (2000) Cortical correlates of learning in monkeys adapting to a new dynamical environment. Proc Natl Acad Sci U S A 97:2259–2263

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Ashe J, Smyrnis N, Taira M (1992) The motor cortex and the coding of force. Science 233:1416–1419

    Google Scholar 

  • Ghafouri M, Feldman AG (2001) The timing of control signals underlying fast point-to-point movements. Exp Brain Res 137:411–423

    Article  CAS  PubMed  Google Scholar 

  • Giszter SF, Mussa-Ivaldi FA, Bizzi E (1993) Convergent force fields organized in the frog’s spinal cord. J Neurosci 13:467–491

    CAS  PubMed  Google Scholar 

  • Glansdorf P, Prigogine I (1971) Thermodynamic theory of structures, stability and fluctuations. Wiley, Chichester

  • Gomi H, Kawato M (1996) Equilibrium point control hypothesis examined by measured arm stiffness during multi joint movement. Science 272:117–120

    CAS  PubMed  Google Scholar 

  • Gomi H, Shidara M, Takemura A, Inoue Y, Kawano K, Kawato M (1998) Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes. J Neurophysiol 80:818–831

    CAS  PubMed  Google Scholar 

  • Goodbody SJ, Wolpert DM (1998) Temporal and amplitude generalization in motor learning. J Neurophysiol 79:1825–1838

    CAS  PubMed  Google Scholar 

  • Gottlieb GL, Corcos DM, Agarwal GC (1989) Organizing principles for single-joint movements. I. Speed-insensitive strategy. J Neurophysiol 62:343–357

    Google Scholar 

  • Gottlieb GL, Corcos DM, Agarwal GC, Latash ML (1990) Organizing principles for single-joint movements. III. Speed-insensitive strategy as a default. J Neurophysiol 63:625–636

    CAS  PubMed  Google Scholar 

  • Gottlieb GL, Song Q, Hong DA, Almeida GL, Corcos D (1996) Coordinating movement at two joints: a principle of linear covariance. J Neurophysiol 75:1760–1764

    CAS  PubMed  Google Scholar 

  • Gribble PL, Ostry DJ (1998) Independent coactivation of shoulder and elbow muscles. Exp Brain Res 123:355–360

    CAS  PubMed  Google Scholar 

  • Gribble PL, Ostry DJ (1999) Compensation for interaction torques during single- and multijoint limb movement. J Neurophysiol 82:2310–2326

    CAS  PubMed  Google Scholar 

  • Gribble PL, Ostry DJ (2000) Compensation for loads during arm movements using equilibrium-point control. Exp Brain Res 135:474–482

    CAS  PubMed  Google Scholar 

  • Gribble PL, Scott SH (2002) Overlap of internal models for mechanical loads during reaching in motor cortex. Nature 417:938–941

    Article  CAS  PubMed  Google Scholar 

  • Gribble PL, Ostry DJ, Sanguineti V, Laboissière R (1998) Are complex control signals required for human arm movement? J Neurophysiol 79:1409–1424

    CAS  PubMed  Google Scholar 

  • Hallet M, Marsden CD (1981) Physiology and pathophysiology of the ballistic movement pattern. Prog Clin Neurophysiol 9:331–336

    Google Scholar 

  • Hansen K, Hoffman P (1922) Weitere Untersuchungen über die Bedeutung der Eigenreflexe für unsere Bewegungen. I. Anspannungs- und Entspannungsreflexe. Z Biol 75:293–304

    Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    CAS  Google Scholar 

  • Hogan N (1990) Mechanical impedance of single- and multi-articular systems. In: Winters JM, Woo SL-Y (eds) Multiple muscle systems. Biomechanics and movement organization. Springer, New York, pp 149–164

  • Hollerbach JM (1982) Computers, brains and the control of movement. Trends Neurosci 6:189–192

    Article  Google Scholar 

  • Jones LA (1989) Matching forces: constant errors and differential thresholds. Perception 18:681–687

    CAS  PubMed  Google Scholar 

  • Jordan MI, Rumelhart DE (1992) Forward models: supervised learning with a distal teacher. Cogn Sci 16:307–354

    Article  Google Scholar 

  • Kalaska JF, Cohen DA, Hyde ML, Prud’homme M (1989) A comparison of movement direction related versus load direction related activity in primate motor cortex, using a two-dimensional reaching task. J Neurosci 9:2080–2102

    CAS  PubMed  Google Scholar 

  • Kalaska JF, Cohen DA, Prud’homme M, Hyde ML (1990) Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Exp Brain Res 80:351–364

    CAS  PubMed  Google Scholar 

  • Katayama M, Kawato M (1993) Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models. Biol Cybern 69:353–362

    CAS  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    CAS  PubMed  Google Scholar 

  • Kawato M, Gomi H (1992) A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern 68:95–103

    CAS  PubMed  Google Scholar 

  • Kawato M, Wolpert D (1998) Internal models for motor control. In: Sensory guidance of movement (Novartis Foundation Symposium 218). Wiley, Chichester, pp 291–307

  • Koshland GF, Galloway JC, Nevoret-Bell CJ (2000) Control of the wrist in three-joint arm movements to multiple directions in the horizontal plane. J Neurophysiol 83:3188–3195

    CAS  PubMed  Google Scholar 

  • Kots ML (1975) Organisation of voluntary movement. Nauka, Moscow, p 247

  • Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72:1–15

    PubMed  Google Scholar 

  • Lashley KS (1951) The problem of serial order in behavior. In: Jeffress LA (ed) Cerebral mechanisms in behavior. Wiley, New York

  • Latash ML (1993) Control of human movement. Human Kinetics, Champaign

  • Lestienne F (1979) Effects of inertial load and velocity on the braking process of voluntary limb movements. Exp Brain Res 35:407–418

    PubMed  Google Scholar 

  • Lestienne FG, Thullier F, Archambault P, Levin MF, Feldman AG (2000) Multi-muscle control of head movements in monkeys: the referent configuration hypothesis. Neurosci Lett 283:65–68

    Article  CAS  PubMed  Google Scholar 

  • Levin MF, Lamarre Y, Feldman AG (1995) Control variables and proprioceptive feedback in fast single-joint movements. Can J Physiol Pharmacol 73:316–330

    CAS  PubMed  Google Scholar 

  • Li CS, Padoa-Schioppa C, Bizzi E (2001) Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30:593–607

    CAS  PubMed  Google Scholar 

  • Matthews PBC (1959) The dependence of tension upon extension in the stretch reflex of the soleus of the decerebrate cat. J Physiol (London) 47:521–546

    Google Scholar 

  • Matthews PBC (1972) Mammalian muscle receptors and their central actions. Edward Arnold, London

  • Mehta B, Schaal S (2002) Forward models in visuomotor control. J Neurophysiol 88:942–953

    PubMed  Google Scholar 

  • Merton PA (1951) The silent period in a muscle of the human hand. J Physiol 114:183–198

    Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9:1265–1285

    Article  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a Smith predictor? J Mot Behav 25:203–216

    PubMed  Google Scholar 

  • Morin C, Katz R, Mazieres L, Pierrot-Deseilligny E (1982) Comparison of soleus H reflex facilitation at the onset of soleus contractions produced voluntarily and during the stance phase of human gait. Neurosci Lett 33:47–53

    CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi FA, Bizzi E (2000) Motor learning through the combination of primitives. Philos Trans R Soc Lond B Biol Sci 355:1755–1769

    Article  CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi FA, Hogan N, Bizzi E (1985) Neural, mechanical and geometric factors subserving arm posture in humans. J Neurosci 5:2732–2743

    PubMed  Google Scholar 

  • Mussa-Ivaldi FA, Giszter SF, Bizzi E (1994) Linear combinations of primitives in vertebrate motor control. Proc Natl Acad Sci U S A 91:7534–7538

    CAS  PubMed  Google Scholar 

  • Nørgaard M, Poulsen NK, Ravn O (2000) New developments in state estimation for nonlinear systems. Automatica 36:1627–1638

    Article  Google Scholar 

  • Otten G, de Vries TJA, van Amerongen J, Rankers AM, Gaal EW (1997) Linear motor motion control using a learning feedforward controller. IEEE/ASME Trans Mechanotron 2:179–188

    Google Scholar 

  • Robinson DA (1970) Oculomotor unit behavior in the monkey. J Neurophysiol 33:393–404

    CAS  PubMed  Google Scholar 

  • Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73:820–835

    CAS  PubMed  Google Scholar 

  • Sainburg RL, Ghez C, Kalakanis D (1999) Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. J Neurophysiol 81:1045–1056

    CAS  PubMed  Google Scholar 

  • Schweighofer N, Arbib MA, Kawato M (1998) Role of cerebellum in reaching movements in humans. I. Distributed inverse dynamic control. Eur J Neurosci 10:86–94

    CAS  PubMed  Google Scholar 

  • Selhorst JB, Stark L, Ochs AL, Hoyt WF (1976) Disorders in cerebellar ocular motor control. Brain 99:497–508

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    CAS  PubMed  Google Scholar 

  • Shidara M, Kawano K, Gomi H, Kawato M (1993) Inverse dynamic model eye movement control by Purkinje cells in the cerebellum. Nature 365:50–52

    CAS  PubMed  Google Scholar 

  • St-Onge N, Adamovich SV, Feldman AG (1997) Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modeling. Neuroscience 79:295–316

    CAS  PubMed  Google Scholar 

  • Suzuki M, Shiller DM, Gribble PL, Ostry DJ (2001) Relationship between cocontraction, movement kinematics and phasic muscle activity in single-joint arm movement. Exp Brain Res 140:171–181

    Article  CAS  PubMed  Google Scholar 

  • Tamada T, Miyauchi S, Imamizu H, Yoshioka T, Kawato M (1999) Activation of the cerebellum in grip force and load force coordination: an fMRI study. Neuroimage 6:S492

    Google Scholar 

  • Thach WT (1998) A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem 70:177–188

    CAS  Google Scholar 

  • Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747

    CAS  PubMed  Google Scholar 

  • Virji-Babul N, Cooke JD (1995) Influence of joint interactional effects on the coordination of planar two-joint arm movements. Exp Brain Res 103:451–459

    CAS  PubMed  Google Scholar 

  • Von Holst E, Mittelstaedt H (1950/1973) Daz Reafferezprincip. Wechselwirkungen zwischen Zentralnerven-system und Peripherie. Naturwissenschaften 37:467–476, 1950. The reafference principle. In: The behavioral physiology of animals and man. The collected papers of Erich von Holst. Martin R (translator) University of Miami Press, Coral Gables, Florida, pp 139–173

  • Wachholder K, Altenburger H (1926) Beiträge zur Physiologie der Willkürlichen Bewegung. X. Einzelbewegungen. Pflugers Arch Ges Physiol 214:642–661

    Google Scholar 

  • Wachholder K, Altenburger H (1927/2002) Do our limbs have only one rest length? A contribution to the measurement of elastic forces in passive and active movements. Pflugers Archiv Ges Physiol 215:627–640. Translated by D. Sternad. Motor Control 6:302–318

    Google Scholar 

  • Wallace SA (1981) An impulse-timing theory for reciprocal control of muscular activity in rapid, discrete movements. J Mot Behav 13:144–160

    Google Scholar 

  • Winter DA (1984) Biomechanics of human movement with applications to the study of human locomotion. Crit Rev Biomed Eng 9:287–314

    Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci Suppl: 1212–1217

    Article  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  Google Scholar 

  • Wolpert DM, Gharamani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1179–1182

    Google Scholar 

  • Zajac FE, Neptune RR, Kautz SA (2002) Biomechanics and muscle coordination of human walking, part I: Introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16:215–232

    Article  PubMed  Google Scholar 

  • Ziebolz H, Paynter HM (1954) Possibilities of a two-time scale computing system for control and simulation of dynamic systems. Proc Natl Electronics Conf 9:215–223

    Google Scholar 

Download references

Acknowledgements

This research was supported by NIH grants DC-00594 and DC-04669 from the National Institute on Deafness and Other Communication Disorders, CIHR Canada, NSERC Canada, and FQRNT Québec. The authors thank Philippe Archambault and Paul L. Gribble for suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Ostry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostry, D.J., Feldman, A.G. A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153, 275–288 (2003). https://doi.org/10.1007/s00221-003-1624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1624-0

Keywords

Navigation