Skip to main content

Model-Based Interpretations of Experimental Data Related to the Control of Balance During Stance and Gait in Humans

  • Chapter
  • First Online:
Neuromechanical Modeling of Posture and Locomotion

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

  • 1380 Accesses

Abstract

An important goal in developing a model is to explain experimental data from a physiological system in a manner that provides insight into the function of that system. We begin by using data from experiments that characterized the dynamic properties of the human balance control system that regulates body orientation during stance. The dynamic properties of stance control are expressed as frequency response functions derived from body sway evoked by pseudorandom stimuli that tilted the surface upon which subjects stood or the visual surround that they viewed. A feedback control model is developed in a step-wise manner in order to illustrate how different subsystems of the model combine to explain the features of the experimental data and to reveal (1) the contributions of feedback control based on sensory measures of body motion from proprioceptive, visual, and vestibular systems, (2) the regulation of the responsiveness to perturbations using sensory reweighting, (3) the contribution of positive torque feedback, and (4) the influence of passive dynamics of muscle/tendon systems. The insights obtained from this stance control model are then applied to aid in the interpretation of new results from experiments that investigate the control of body orientation during a gait-like task of stepping-in-place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahn J, Hogan N (2013) Long-range correlations in stride intervals may emerge from non-chaotic walking dynamics. PLoS One 8:e73239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandrov AV, Frolov AA, Horak FB, Carlson-Kuhta P, Park S (2005) Feedback equilibrium control during human standing. Biol Cybern 93:309–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelaki DE, McHenry MQ, Dickman JD, Newlands SD, Hess BJ (1999) Computation of inertial motion: neural strategies to resolve ambiguous otolith information. J Neurosci 19:316–327

    CAS  PubMed  Google Scholar 

  • Angelaki DE, Shaikh AG, Green AM, Dickman JD (2004) Neurons compute internal models of the physical laws of motion. Nature 430:560–564

    Article  CAS  PubMed  Google Scholar 

  • Bauby CE, Kuo AD (2000) Active control of lateral balance in human walking. J Biomech 33:1433–1440

    Article  CAS  PubMed  Google Scholar 

  • Bendat JS, Piersol AG (2000) Random data: analysis and measurement procedures, 3rd edn. Wiley, New York

    Google Scholar 

  • Boonstra TA, Schouten AC, van der Kooij H (2013) Identification of the contribution of the ankle and hip joints to multi-segmental balance control. J Neuroeng Rehabil 10:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosco G, Poppele RE, Eian J (2000) Reference frames for spinal proprioception: limb endpoint based or joint-level based? J Neurophysiol 83:2931–2945

    CAS  PubMed  Google Scholar 

  • Brenière Y (1996) Why we walk the way we do. J Mot Behav 28:291–298

    Article  PubMed  Google Scholar 

  • Casabona A, Stella Valle M, Bosco G, Perciavalle V (2004) Cerebellar encoding of limb position. Cerebellum 3:172–177

    Article  PubMed  Google Scholar 

  • Cenciarini M, Peterka RJ (2006) Stimulus-dependent changes in the vestibular contribution to human postural control. J Neurophysiol 95:2733–2750

    Article  PubMed  Google Scholar 

  • Davies WDT (1970) System identification for self-adaptive control. Wiley-Interscience, London

    Google Scholar 

  • Dean JC, Alexander NB, Kuo AD (2007) The effect of lateral stabilization on walking in young and old adults. IEEE Trans Biomed Eng 54:1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Dingwell JB, Cusumano JP (2000) Nonlinear time series analysis of normal and pathological human walking. Chaos 10:848–863

    Article  PubMed  Google Scholar 

  • Duysens J, Clarac F, Cruse H (2000) Load-regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 80:83–133

    CAS  PubMed  Google Scholar 

  • Fujisawa N, Masuda T, Inaoka H, Fukuoka Y, Ishida A, Minamitani H (2005) Human standing posture control system depending on adopted strategies. Med Biol Eng Comput 43:107–114

    Article  CAS  PubMed  Google Scholar 

  • Goodworth AD, Peterka RJ (2009) Contribution of sensorimotor integration to spinal stabilization in humans. J Neurophysiol 102:496–512

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodworth AD, Peterka RJ (2010a) Influence of bilateral vestibular loss on spinal stabilization in humans. J Neurophysiol 103:1978–1987

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodworth AD, Peterka RJ (2010b) Influence of stance width on frontal plane postural dynamics and coordination in human balance control. J Neurophysiol 104:1103–1118

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodworth AD, Peterka RJ (2012) Sensorimotor integration for multisegmental frontal plane balance control in humans. J Neurophysiol 107:12–28

    Article  PubMed  Google Scholar 

  • Hausdorff JM (2005) Gait variability: methods, modeling and meaning. J Neuroeng Rehabil 2:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Hettich G, Assländer L, Gollhofer A, Mergner T (2014) Human hip-ankle coordination emerging from multisensory feedback control. Human Movement Science 37:123–146

    Google Scholar 

  • Hof AL, Gazendam MGJ, Sinke WE (2005) The condition for dynamic stability. J Biomech 38:1–8

    Article  CAS  PubMed  Google Scholar 

  • Horak FB, Macpherson JM (1996) Postural orientation and equilibrium. In: Rowell LB, Shepherd JT (eds) Handbook of physiology: section 12: exercise: regulation and integration of multiple systems. Oxford University Press, New York, pp 255–292

    Google Scholar 

  • Johansson R, Magnusson M, Akesson M (1988) Identification of human postural dynamics. IEEE Trans Biomed Eng 35:858–869

    Article  CAS  PubMed  Google Scholar 

  • Kay BA, Warren WH (2001) Coupling of posture and gait: mode locking and parametric excitation. Biol Cybern 85:89–106

    Article  CAS  PubMed  Google Scholar 

  • Kiemel T, Elahi AJ, Jeka JJ (2008) Identification of the plant for upright stance in humans: multiple movement patterns from a single neural strategy. J Neurophysiol 100:3394–3406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Atkeson CG, Park S (2012) Perturbation-dependent selection of postural feedback gain and its scaling. J Biomech 45:1379–1386

    Article  PubMed  Google Scholar 

  • Kuo AD (1999) Stabilization of lateral motion in passive dynamic walking. Int J Robot Res 18:917–930

    Article  Google Scholar 

  • Li Y, Levine WS, Loeb GE (2012) A two-joint human posture control model with realistic neural delays. IEEE Trans Neural Syst Rehabil Eng 20:738–748

    Article  PubMed  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2005) Non-invasive tracking of contractile length. J Appl Physiol 100:1311–1323

    Article  PubMed  Google Scholar 

  • Markert G, Büttner U, Straube A, Boyle R (1988) Neuronal activity in the flocculus of the alert monkey during sinusoidal optokinetic stimulation. Exp Brain Res 70:134–144

    CAS  PubMed  Google Scholar 

  • Maufroy C, Kimura H, Takase K (2010) Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Auton Robot 28:331–333

    Article  Google Scholar 

  • McMahon TA (1984) Muscles, reflexes, and locomotion. Princeton University Press, Princeton

    Google Scholar 

  • Merfeld DM, Zupan L, Peterka RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398:615–618

    Article  CAS  PubMed  Google Scholar 

  • Mergner T (2004) Meta level concept versus classic reflex concept for the control of posture and movement. Arch Ital Biol 142:175–198

    CAS  PubMed  Google Scholar 

  • Mergner T (2010) A neurological view on reactive human stance control. Anu Rev Control 34:177–198

    Article  Google Scholar 

  • Mergner T, Maurer C, Peterka RJ (2002) Sensory contributions to the control of stance: a posture control model. Adv Exp Med Biol 508:147–152

    Article  PubMed  Google Scholar 

  • Mummolo C, Mangialardi L, Kim JH (2013) Quantifying dynamic characteristics of human walking for comprehensive gait cycle. J Biomech Eng 135:91006

    Article  PubMed  Google Scholar 

  • Nashner LM (1981) Analysis of stance posture in humans. In: Towe AL, Luschei ES (eds) Handbook of behavioral neurobiology, vol 5. Plenum Publishing Corporation, New York, pp 527–565

    Google Scholar 

  • Otnes RK, Enochson L (1972) Digital time series analysis. Wiley, New York

    Google Scholar 

  • Park S, Horak FB, Kuo AD (2004) Postural feedback responses scale with biomechanical constraints in human standing. Exp Brain Res 154:417–127

    Article  PubMed  Google Scholar 

  • Pasma JH, Boonstra TA, Campfens SF, Schouten AC, van der Kooij H (2012) Sensory reweighting of proprioceptive information on the left and right leg during human balance control. J Neurophysiol 108:1138–1148

    Article  CAS  PubMed  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118

    CAS  PubMed  Google Scholar 

  • Peterka RJ (2003) Simplifying the complexities of maintaining balance. IEEE Eng Med Biol Mag 22:63–68

    Article  PubMed  Google Scholar 

  • Peterka RJ, Benolken MS (1995) Role of somatosensory and vestibular cues in attenuating visually induced human postural sway. Exp Brain Res 105:101–110

    Article  CAS  PubMed  Google Scholar 

  • Peterka RJ, Black FO, Schoenhoff MB (1990) Age-related changes in human vestibulo-ocular and optokinetic reflexes: Pseudorandom rotation tests. J Vestib Res 1:67–71

    Google Scholar 

  • Peterka RJ, Gianna-Poulin CC, Zupan LH, Merfeld DM (2004) Origin of orientation-dependent asymmetries in vestibulo-ocular reflexes evoked by caloric stimulation. J Neurophysiol 92:2333–2345

    Article  PubMed  Google Scholar 

  • Pintelon R, Schoukens J (2012) System identification: a frequency domain approach. IEEE Press, New York

    Book  Google Scholar 

  • Prochazka A, Gillard D, Bennett DJ (1997) Positive force feedback control of muscles. J Neurophysiol 77:3226–3236

    CAS  PubMed  Google Scholar 

  • Terry K, Sinitski EH, Dingwell JB, Wilken JM (2012) Amplitude effects of medio-lateral mechanical and visual perturbations. J Biomech 45:1979–1986

    Article  PubMed  Google Scholar 

  • van der Kooij H, Peterka RJ (2011) Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise. J Comput Neurosci 30:759–778

    Article  PubMed  Google Scholar 

  • van der Kooij H, Jacobs R, Koopman B, Grootenboer H (1999) A multisensory integration model of human stance control. Biol Cybern 80:299–308

    Article  PubMed  Google Scholar 

  • Winter DA (1995) Human balance and posture control during standing and walking. Gait Posture 3:193–214

    Article  Google Scholar 

  • Zupan LH, Peterka RJ, Merfeld DM (2000) Neural processing of gravito-inertial cues in humans. I. Influence of the semicircular canals following post-rotatory tilt. J Neurophysiol 84:2001–2015

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All experiments were performed according to protocols approved by the IRB of Oregon Health & Science University. Work was supported by NIH grants R01AG17960 and R01DC010779.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Peterka PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peterka, R. (2016). Model-Based Interpretations of Experimental Data Related to the Control of Balance During Stance and Gait in Humans. In: Prilutsky, B., Edwards, D. (eds) Neuromechanical Modeling of Posture and Locomotion. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3267-2_9

Download citation

Publish with us

Policies and ethics