Skip to main content
Log in

Accelerated proliferation of hepatocytes in rats with iron overload after partial hepatectomy

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

A Correction to this article was published on 24 March 2020

This article has been updated

Abstract

Although iron overload is implicated in hepatocarcinogenesis, the precise mechanism was not known yet. In the present study, we investigated the effect of iron overload upon the induction of hepatocyte proliferation after 70 % partial hepatectomy (PH) in rats fed with rat chow with 3 % carbonyl iron for 3 months. In normal-diet rats, the increase in Ki-67 labeling index (LI) commenced at 24 h post-PH and the LIs of proliferating cell nuclear antigen (PCNA) incorporated 5-bromo-2′-deoxyuridine (BrdU) and phospho-histone H3 reached maximum values at 36 and 48 h after PH, respectively. In iron-overload rats, the above parameters occurred 12 h earlier compared to that of normal-diet rats, shortening the G0–G1 transition. Interestingly, nuclear staining for metallothionein (MT), which is essential for hepatocyte proliferation, was noted even at 0 h in iron-overload rats, while MT expression occurred at 6 h in the normal rats. Moreover, nuclear factor kappa B (NF-κB) expression, which is an essential early event leading to liver regeneration, was detected in Kupffer cells at 0 h in iron-overload rats. These results may indicate that overloaded iron, maybe through the induction of MT and NF-κB, may keep liver as a state ready to regenerate in response to PH, by bypassing signal transduction cascades involved in the initiation of liver regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 24 March 2020

    The figure shown below is the correct version. We apologize for the mistake.

  • 24 March 2020

    The figure shown below is the correct version. We apologize for the mistake.

References

  • Abo T, Nagayasu T, Hishikawa Y, Tagawa T, Nanashima A, Yamayoshi T, Matsumoto K et al (2010) Expression of keratinocyte growth factor and its receptor in rat tracheal cartilage: possible involvement in wound healing of the damaged cartilage. Acta Histochem Cytochem 43:89–98

    Article  PubMed  CAS  Google Scholar 

  • Ashizawa M, Miyazaki M, Abe K, Furusu A, Isomoto H, Harada T, Ozono Y et al (2003) Detection of nuclear factor-κB in IgA nephropathy using southwestern histochemistry. Am J Kidney Dis 42:76–86

    Article  PubMed  CAS  Google Scholar 

  • Bacon BR, Britton RS (1990) The pathology of hepatic iron overload: a free radical-mediated process? Hepatology 11:127–137

    Article  PubMed  CAS  Google Scholar 

  • Bader A, Pavlica S, Deiwick A, Lotkova H, Kucera O, Darsow K, Bartel S et al (2011) Proteomic analysis to display the effect of low doses of erythropoietin on rat liver regeneration. Life Sci 89:827–833

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Broadhurst KA, Mathahs MM, Weydert J (2007) Differential expression of stress-inducible proteins in chronic hepatic iron overload. Toxicol Appl Pharmacol 223:180–186

    Article  PubMed  CAS  Google Scholar 

  • Brunet S, Thibault L, Delvin E, Yotov W, Bendayan M, Levy E (1999) Dietary iron overload and induced lipid peroxidation are associated with impaired plasma lipid transport and hepatic sterol metabolism in rats. Hepatology 29:1809–1817

    Google Scholar 

  • Bucher NL, Swaffield MN, Ditroia JF (1964) The influence of age upon the incorporation of thymidine-2-C14 into the DNA of regenerating rat liver. Cancer Res 24:509–512

    PubMed  CAS  Google Scholar 

  • Cherian MG, Apostolova MD (2000) Nuclear localization of metallothionein during cell proliferation and differentiation. Cell Mol Biol 46:347–356

    PubMed  CAS  Google Scholar 

  • Cherian MG, Kang YJ (2006) Metallothionein and liver cell regeneration. Exp Biol Med 231:138–144

    CAS  Google Scholar 

  • Cherian MG, Jayasurya A, Bay BH (2003) Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res 533:201–209

    Article  PubMed  CAS  Google Scholar 

  • Cornejo P, Varela P, Videla LA, Fernández V (2005) Chronic iron overload enhances inducible nitric oxide synthase expression in rat liver. Nitric Oxide 13:54–61

    Article  PubMed  CAS  Google Scholar 

  • Cressman DE, Greenbaum LE, Haber BA, Taub R (1994) Rapid activation of post-hepatectomy factor/nuclear factor κB in hepatocytes, a primary response in the regenerating liver. J Biol Chem 269:30429–30435

    PubMed  CAS  Google Scholar 

  • Di Bisceglie AM (1997) Hepatitis C and hepatocellular carcinoma. Hepatology 26:34S–38S

    Article  PubMed  Google Scholar 

  • Fausto N, Campbell JS, Riehle KJ (2006) Liver regeneration. Hepatology 43:S45–S53

    Article  PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  • Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    Article  PubMed  CAS  Google Scholar 

  • Higgins GM, Anderson RM (1931) Experimental pathology of the liver. 1. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol 12:186–202

    Google Scholar 

  • Hishikawa Y, Koji T, Dhar DK, Kinugasa S, Yamaguchi M, Nagasue N (1999) Metallothionein expression correlates with metastatic and proliferative potential in squamous cell carcinoma of the oesophagus. Br J Cancer 81:712–720

    Article  PubMed  CAS  Google Scholar 

  • Isomoto H, Miyazaki M, Mizuta Y, Takeshima F, Murase K, Inoue K, Yamasaki K et al (2000) Expression of nuclear factor-κB in Helicobacter pylori-infected gastric mucosa detected with southwestern histochemistry. Scand J Gastroenterol 3:247–254

    Google Scholar 

  • Kagi JHR, Vallee BL (1961) Metallothionein: a cadmium and zinc-containing protein from equine renal cortex. J Biol Chem 236:2435–2442

    PubMed  CAS  Google Scholar 

  • Kato J, Kobune M, Nakamura T, Kuroiwa G, Takada K, Takimoto R, Sato Y et al (2001) Normalization of elevated hepatic 8-hydroxy-2′-deoxyguanosine levels in chronic hepatitis C patients by phlebotomy and low iron diet. Cancer Res 61:8697–8702

    PubMed  CAS  Google Scholar 

  • Kirillova I, Chaisson M, Fausto N (1999) Tumor necrosis factor induces DNA replication in hepatic cells through nuclear factor κB activation. Cell Growth Differ 10:819–828

    PubMed  CAS  Google Scholar 

  • Knittel T, Mehde M, Grundmann A, Saide B, Scharf J-G, Ramadori G (2000) Expression of matrix metalloproteinases and their inhibitors during hepatic tissue repair in the rat. Histochem Cell Biol 113:443–453

    PubMed  CAS  Google Scholar 

  • Koji T, Nakane PK, Murakoshi M, Watanabe K, Terayama H (1988) Cell density dependent morphological changes in adult rat hepatocytes during primary culture. Cell Biochem Funct 6:237–243

    Article  PubMed  CAS  Google Scholar 

  • Koji T, Komuta K, Nozawa M, Yamada S, Nakane PK (1994) Localization of cyclic adenosine 3′,5′-monophosphate-responsive element (CRE)-binding proteins by southwestern histochemistry. J Histochem Cytochem 42:1399–1405

    Article  PubMed  CAS  Google Scholar 

  • Koji T, Kondo S, Hishikawa Y, An S, Sato Y (2008) In situ detection of methylated DNA by histo endonuclease-linked detection of methylated DNA sites: a new principle of analysis of DNA methylation. Histochem Cell Biol 130:917–925

    Article  PubMed  CAS  Google Scholar 

  • Kojima N, Young CR, Bates GW (1982) Failure of metallothionein to bind iron or act as an iron mobilizing agent. Biochim Biophys Acta 716:273–275

    Article  PubMed  CAS  Google Scholar 

  • Kowdley KV (2004) Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology 127:S79–S86

    Article  PubMed  CAS  Google Scholar 

  • Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213:286–300

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Minai Y, Haga M (2008) Impaired growth of small intestinal epithelium by adrenalectomy in weaning rats. Acta Histochem Cytochem 41:83–88

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Mizuta N, Fujiwara I, Sakaguchi K, Ogata H, Magae J, Yagita H et al (2008) Blockade of the Fas/Fas ligand interaction suppresses hepatocyte apoptosis in ischemia-reperfusion rat liver. Apoptosis 13:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Nejak-Bowen KN, Thompson MD, Singh S, Bowen WC Jr, Dar MJ, Khillan J, Dai C et al (2010) Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant β-catenin. Hepatology 51:1603–1613

    Article  PubMed  CAS  Google Scholar 

  • Nick H, Allegrini PR, Fozard L, Junker U, Rojkjaer L, Salie R, Niederkofler V et al (2009) Deferasirox reduces iron overload in a murine model of juvenile hemochromatosis. Exp Biol Med 234:492–503

    Article  CAS  Google Scholar 

  • Oliver JR, Mara TW, Cherian MG (2005) Impaired hepatic regeneration in metallothionein-I/II knockout mice after partial hepatectomy. Exp Biol Med 230:61–67

    CAS  Google Scholar 

  • Park CH, Bacon BR, Brittenham GM, Tavill AS (1987) Pathology of dietary carbonyl iron overload in rats. Lab Invest 57:555–563

    PubMed  CAS  Google Scholar 

  • Perls M (1867) Nachweis von Eisenoxyd in gewissen Pigmenten. Virchows Arch 39:42–48

    Article  Google Scholar 

  • Pietrangelo A, Rocchi E, Schiaffonati L, Ventura E, Cairo G (1990) Liver gene expression during chronic dietary iron overload in rats. Hepatology 11:798–804

    Article  PubMed  CAS  Google Scholar 

  • Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loréal O (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811–7819

    Article  PubMed  CAS  Google Scholar 

  • Plümpe J, Malek NP, Bock CT, Rakemann T, Manns MP, Trautwein C (2000) NF-κB determines between apoptosis and proliferation in hepatocytes during liver regeneration. Am J Physiol Gastrointest Liver Physiol 278:G173–G183

    PubMed  Google Scholar 

  • Sheikh N, Batusic DS, Dudas J, Tron K, Neubauer K, Salie B, Ramadori G (2006) Hepcidin and hemojuvelin gene expression in rat liver damage: in vivo and in vitro studies. Am J Physiol Gastrointest Liver Physiol 291:G482–G490

    Article  PubMed  CAS  Google Scholar 

  • Shin T, Kuboki S, Lentsch AB (2008) Roles of nuclear factor-κB in postischemic liver. Hepatol Res 38:429–440

    Article  PubMed  CAS  Google Scholar 

  • Shukuwa K, Izumi S, Hishikawa Y, Ejima K, Inoue S, Muramatsu M, Ouchi Y et al (2006) Diethylstilbestrol increases the density of prolactin cells in male mouse pituitary by inducing proliferation of prolactin cells and transdifferentiation of gonadotropic cells. Histochem Cell Biol 126:111–123

    Article  PubMed  CAS  Google Scholar 

  • Soe K, Hishikawa Y, Fukuzawa Y, Win N, Yin KS, Win KM, Myint AA et al (2007) Possible correlation between iron deposition and enhanced proliferating activity in hepatitis C virus-positive hepatocellular carcinoma in Myanmar (Burma). J Gastroenterol 42:225–235

    Article  PubMed  CAS  Google Scholar 

  • Teoh N, Dela PA, Farrell G (2002) Hepatic ischemic preconditioning in mice is associated with activation of NF-κB, p38 kinase, and cell cycle entry. Hepatology 36:94–102

    Article  PubMed  CAS  Google Scholar 

  • Tohyama C, Suzuki JS, Hemelraad J, Nishimura N, Nishimura H (1993) Induction of metallothionein and its localization in the nucleus of rat hepatocytes after partial hepatectomy. Hepatology 18:1193–1201

    Article  PubMed  CAS  Google Scholar 

  • Turlin B, Juguet F, Moirand R, Le Quilleuc D, Loréal O, Campion JP, Launois B et al (1995) Increased liver iron stores in patients with hepatocellular carcinoma developed on a noncirrhotic liver. Hepatology 22:446–450

    PubMed  CAS  Google Scholar 

  • Wang RA, Nakane PK, Koji T (1998) Autonomous cell death of mouse male germ cells during fetal and postnatal period. Biol Reprod 58:1250–1256

    Article  PubMed  CAS  Google Scholar 

  • Williams LM, Cunningham H, Ghaffar A, Riddoch GI, Bremner I (1989) Metallothionein immunoreactivity in the liver and kidney of copper injected rats. Toxicology 55:307–316

    Article  PubMed  CAS  Google Scholar 

  • Wullaert A, van Loo G, Heyninck K, Beyaert R (2007) Hepatic tumor necrosis factor signaling and nuclear factor-κB: effects on liver homeostasis and beyond. Endocr Rev 28:365–386

    Article  PubMed  CAS  Google Scholar 

  • Xiong S, She H, Sung CK, Tsukamoto H (2003) Iron-dependent activation of NF-κB in Kupffer cells: a priming mechanism for alcoholic liver disease. Alcohol 30:107–113

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Hayashi H, Yoshioka K, Khogo Y, Saito H, Niitsu Y, Kato J et al (2004) A significant reduction in serum alanine aminotransferase levels after 3-month iron reduction therapy for chronic hepatitis C: a multicenter, prospective, randomized, controlled trial in Japan. J Gastroenterol 39:570–574

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japanese Ministry for Education, Culture, Sports, Science and Technology (Nos. 18390060 and 19406005 to T. Koji).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Koji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, S., Soe, K., Akamatsu, M. et al. Accelerated proliferation of hepatocytes in rats with iron overload after partial hepatectomy. Histochem Cell Biol 138, 773–786 (2012). https://doi.org/10.1007/s00418-012-0994-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0994-4

Keywords

Navigation