Skip to main content

Advertisement

Log in

mTOR-Dependent Suppression of Remnant Liver Regeneration in Liver Failure After Massive Liver Resection in Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Massive hepatectomy often leads to fatal liver failure because of a small remnant liver volume. The aim of this study was to investigate the potential mechanisms leading to liver failure.

Methods

Sprague–Dawley rats had performed a sham operation, 85 % partial hepatectomy (PH) or 90 % PH, and all had free access to water with or without supplemented glucose. Liver function and survival were evaluated. Liver parenchymal injury was assessed by evaluating hepatic pathology, blood biochemistry, and apoptotic and necrotic alterations. The regeneration response was assessed by the weight gain of the remnant liver, hepatocyte proliferation markers, and regeneration-related molecules.

Results

The 90 % hepatectomy resulted in a significantly lower survival rate and impaired liver function; however, no significant more serious liver parenchymal injuries were detected. TNF-α, HGF, myc and IL-6 were either similarly expressed or overexpressed; however, the increase in remnant liver weight, mitotic index, and the presence of Ki-67 and PCNA were significantly lower in the 90 %-hepatectomized rats. mTOR, p70S6K and 4EBP1 were not activated in the remnant liver after a 90 % hepatectomy as obviously as those after an 85 % hepatectomy, which was concomitant with the higher expression of phospho-AMPK and a lower intrahepatic ATP level. Glucose treatment significantly improved the survival rate of 90 %-hepatectomized rats.

Conclusions

Suppression of remnant liver regeneration was observed in the 90 % PH and contributed to fatal liver failure. This suppressed liver regenerative capacity was related to the inhibited activation of mTOR signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agrawal S, Belghiti J. Oncologic resection for malignant tumors of the liver. Ann Surg. 2011;253:656–665.

    Article  PubMed  Google Scholar 

  2. de Santibanes E, Alvarez FA, Ardiles V. How to avoid postoperative liver failure: a novel method. World J Surg. 2012;36:125–128.

    Article  PubMed  Google Scholar 

  3. Squires MH, Lad NL, Fisher SB, et al. The effect of preoperative renal insufficiency on postoperative outcomes after major hepatectomy: a multi-institutional analysis of 1,170 patients. J Am Coll Surg. 2014;219:914–922.

    Article  PubMed  Google Scholar 

  4. Liu H, Zhu S. Present status and future perspectives of preoperative portal vein embolization. Am J Surg. 2009;197:686–690.

    Article  PubMed  Google Scholar 

  5. Garcea G, Maddern GJ. Liver failure after major hepatic resection. J Hepatobiliary Pancreat Surg. 2009;16:145–155.

    Article  PubMed  Google Scholar 

  6. Jin X, Zhang Z, Beer-Stolz D, et al. Interleukin-6 inhibits oxidative injury and necrosis after extreme liver resection. Hepatology. 2007;46:802–812.

    Article  CAS  PubMed  Google Scholar 

  7. Hammond JS, Guha IN, Beckingham IJ, et al. Prediction, prevention and management of postresection liver failure. Br J Surg. 2011;98:1188–1200.

    Article  CAS  PubMed  Google Scholar 

  8. Hasegawa S, Kubota T, Fukuyama N, et al. Apoptosis of hepatocytes is a main cause of inducing lethal hepatic failure after excessive hepatectomy in rats. Transplant Proc. 1999;31:558–559.

    Article  CAS  PubMed  Google Scholar 

  9. Boermeester MA, Straatsburg IH, Houdijk AP, et al. Endotoxin and interleukin-1 related hepatic inflammatory response promotes liver failure after partial hepatectomy. Hepatology. 1995;22:1499–1506.

    CAS  PubMed  Google Scholar 

  10. Lehmann K, Tschuor C, Rickenbacher A, et al. Liver failure after extended hepatectomy in mice is mediated by a p21-dependent barrier to liver regeneration. Gastroenterology. 2012;143:1609–1619.

    Article  CAS  PubMed  Google Scholar 

  11. Pan N, Lv X, Liang R, et al. Suppression of graft regeneration, not ischemia/reperfusion injury, is the primary cause of small-for-size syndrome after partial liver transplantation in mice. PLoS ONE. 2014;9:e93636.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43:S45–S53.

    Article  CAS  PubMed  Google Scholar 

  13. Kooby DA, Zakian KL, Challa SN, et al. Use of phosphorous-31 nuclear magnetic resonance spectroscopy to determine safe timing of chemotherapy after hepatic resection. Cancer Res. 2000;60:3800–3806.

    CAS  PubMed  Google Scholar 

  14. Ozawa K, Yamada T, Ukikusa M, et al. Mitochondrial phosphorylative activity and DNA synthesis in regenerating liver of diabetic rats. J Surg Res. 1981;31:38–45.

    Article  CAS  PubMed  Google Scholar 

  15. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–484.

    Article  CAS  PubMed  Google Scholar 

  16. Morita T, Togo S, Kubota T, et al. Mechanism of postoperative liver failure after excessive hepatectomy investigated using a cDNA microarray. J Hepatobiliary Pancreat Surg. 2002;9:352–359.

    Article  PubMed  Google Scholar 

  17. Kumar S, Zou Y, Bao Q, et al. Proteomic analysis of immediate-early response plasma proteins after 70% and 90% partial hepatectomy. Hepatol Res. 2013;43:876–889.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Madrahimov N, Dirsch O, Broelsch C, et al. Marginal hepatectomy in the rat: from anatomy to surgery. Ann Surg. 2006;244:89–98.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Mendes-Braz M, Elias-Miro M, Kleuser B, et al. The effects of glucose and lipids in steatotic and non-steatotic livers in conditions of partial hepatectomy under ischaemia-reperfusion. Liver Int. 2014;34:e271–e289.

    Article  CAS  PubMed  Google Scholar 

  20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408.

    Article  CAS  PubMed  Google Scholar 

  21. de Graaf W, Bennink RJ, Heger M, et al. Quantitative assessment of hepatic function during liver regeneration in a standardized rat model. J Nucl Med. 2011;52:294–302.

    Article  PubMed  Google Scholar 

  22. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–262.

    Article  CAS  PubMed  Google Scholar 

  23. Hardie DG. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol. 2015;33:1–7.

    Article  CAS  PubMed  Google Scholar 

  24. Gaub J, Iversen J. Rat liver regeneration after 90% partial hepatectomy. Hepatology. 1984;4:902–904.

    Article  CAS  PubMed  Google Scholar 

  25. Rahbari NN, Garden OJ, Padbury R, et al. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery. 2011;149:713–724.

    Article  PubMed  Google Scholar 

  26. Makino H, Togo S, Kubota T, et al. A good model of hepatic failure after excessive hepatectomy in mice. J Surg Res. 2005;127:171–176.

    Article  CAS  PubMed  Google Scholar 

  27. Panis Y, McMullan DM, Emond JC. Progressive necrosis after hepatectomy and the pathophysiology of liver failure after massive resection. Surgery. 1997;121:142–149.

    Article  CAS  PubMed  Google Scholar 

  28. Ohashi N, Hori T, Chen F, et al. Matrix metalloproteinase-9 contributes to parenchymal hemorrhage and necrosis in the remnant liver after extended hepatectomy in mice. World J Gastroenterol. 2012;18:2320–2333.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol. 2004;5:836–847.

    Article  CAS  PubMed  Google Scholar 

  30. Volarevic S, Stewart MJ, Ledermann B, et al. Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science. 2000;288:2045–2047.

    Article  CAS  PubMed  Google Scholar 

  31. Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110:177–189.

    Article  CAS  PubMed  Google Scholar 

  32. Kantidakis T, Ramsbottom BA, Birch JL, et al. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci USA. 2010;107:11823–11828.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Panasyuk G, Patitucci C, Espeillac C, et al. The role of the mTOR pathway during liver regeneration and tumorigenesis. Ann Endocrinol (Paris). 2013;74:121–122.

    Article  CAS  Google Scholar 

  34. Fouraschen SM, de Ruiter PE, Kwekkeboom J, et al. mTOR signaling in liver regeneration: Rapamycin combined with growth factor treatment. World J Transplant. 2013;3:36–47.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Kawaguchi T, Kodama T, Hikita H, et al. Carbamazepine promotes liver regeneration and survival in mice. J Hepatol. 2013;59:1239–1245.

    Article  CAS  PubMed  Google Scholar 

  36. Buitrago-Molina LE, Pothiraju D, Lamle J, et al. Rapamycin delays tumor development in murine livers by inhibiting proliferation of hepatocytes with DNA damage. Hepatology. 2009;50:500–509.

    Article  CAS  PubMed  Google Scholar 

  37. Sanli T, Steinberg GR, Singh G, et al. AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther. 2014;15:156–169.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–226.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rehman H, Sun J, Shi Y, et al. NIM811 prevents mitochondrial dysfunction, attenuates liver injury, and stimulates liver regeneration after massive hepatectomy. Transplantation. 2011;91:406–412.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Nakatani T, Ozawa K, Asano M, et al. Differences in predominant energy substrate in relation to the resected hepatic mass in the phase immediately after hepatectomy. J Lab Clin Med. 1981;97:887–898.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Technology R&D Program of China (No. 2012BAI06B01) and National S&T Major Project for Infectious Diseases of China (No. 2012ZX10002-017).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Hong Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D.X., Li, C.H., Zhang, A.Q. et al. mTOR-Dependent Suppression of Remnant Liver Regeneration in Liver Failure After Massive Liver Resection in Rats. Dig Dis Sci 60, 2718–2729 (2015). https://doi.org/10.1007/s10620-015-3676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3676-y

Keywords

Navigation